**2nd workshop on advancing the understanding of non-perturbative QCD using energy flow** Stony Brook University, 6-9 November, 2023

# **Overview of 3D structure results at CLAS12**



Maria ŻUREK Argonne National Laboratory, zurek@anl.gov







## **Physics Question**

How does the **spin of the nucleon originate** from its **quark, anti-quark,** and **gluon** constituents and their dynamics?



- All terms have partonic interpretation
- In infinite-momentum frame
- **ℓq and ℓg** (Twist-3 quantities) can be extracted from GPDs
- Nucl. Phys. B 337, 509–546 (1990)

## **Physics Questions**

How is the **nucleon spin correlated with the motion** of quarks and gluons? How is the **nucleon spin correlated with the spatial distribution** of partons?



### How to access proton spin structure?

### **Complementarity of experimental probes**



Hadron-hadron interactions



e+e- annihilation (access to FF)





## **Thomas Jefferson National Accelerator Facility**





#### **Continuous Electron Beam Accelerator Facility** (CEBAF)

- 12 GeV continuous polarized electron beam
- Four experimental halls: A, B, C, D

**CLAS12** located in Hall B high luminosity, wide acceptance

Began data taking in Spring 2018

- 2018-2020: unpolarized proton/deuterium target
- 2022/23 longitudinally polarized proton/deuterium target ~5 % produced



Forward Detector: TORUS magnet HT Cherenkov Counter Drift chamber system LT Cherenkov Counter Forward ToF System Preshower calorimeter EM calorimeter (EC) RICH detector Forward Tagger

**Central Detector:** Solenoid magnet Barrel Silicon Tracker Central Time-of-Flight Central Neutron Detector Micromegas Tracker



## **CLAS12** Kinematic Reach

p(e,e')X, plots based on 200 min. of data taking



Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A.

## **CLAS12** Particle ID





M. Zurek - 3D Structure at CLAS12

## **Selected TMD results**

## **TMDs and Spin-Orbit Correlations**



TMDs surviving integration over  $k_{\tau}$ 

Naive time-reversal odd TMDs describing strength of **spin-orbit correlations** 

Chiral odd TMDs

Off-diagonal part vanishes without parton's transverse motion

TMDs describing strength of spin-orbit correlations non-zero  $\rightarrow$  indication of parton OAM

- No quantitative relation between TMDs & OAM identified yet
- Sivers: correlations of transverse-spin direction and the parton transverse momentum
- **Boer-Mulders:** correlations of parton transverse spin and parton transverse momentum
- **Collins:** fragmentation of a transversely polarized parton into a final-state hadron

## Access to TMDs from the SIDIS Cross Section

### **Unpolarized and Longitudinally Polarized Targets**

$$\frac{d^{6}\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{T}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right) \cdot \left\{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}F_{UU}^{\cos\phi_{h}}\cos\phi_{h} + \varepsilon F_{UU}^{\cos2\phi_{h}}\cos2\phi_{h} + \lambda\left(\sqrt{2\varepsilon(1-\varepsilon)}F_{LU}^{\sin\phi_{h}}\sin\phi_{h}\right)\right\} + S_{L}\left(\sqrt{2\varepsilon(1-\varepsilon)}F_{UL}^{\sin\phi_{h}}\sin\phi_{h} + \varepsilon F_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right) + S_{L}\lambda\left(\sqrt{1-\varepsilon^{2}}F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right) + S_{L}\lambda\left(\sqrt{1-\varepsilon^{2}}F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right)$$



Leading twist formalism (higher-twist terms can be included)

$$F_{UU,T} = C [f_1 D_1]$$

$$F_{UU}^{\cos 2\phi_h} = C \left[ \frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot p_\perp) - k_T \cdot p_\perp}{zMM_h} h_1^\perp H_1^\perp \right]$$

$$F_{UL}^{\sin 2\phi_h} = C \left[ \frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot p_\perp) - k_T \cdot p_\perp}{zMM_h} h_{1L}^\perp H_1^\perp \right]$$

$$F_{LL} = C [g_{1L}D_1]$$

Unpolarized PDF  $\otimes$  Unpolarized fragmentation function

Boer-Mulders  $\otimes$  Collins Fragmentation Function

Worm-gear  $\otimes$  Collins Fragmentation Function

Helicity  $\otimes$  Unpolarized fragmentation function

M. Żurek - 3D Structure at CLAS12

## Access to TMDs from the SIDIS Cross Section

### **Transversely Polarized Target**

$$\begin{aligned} \frac{\mathrm{d}^{6}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}\psi\,\mathrm{d}z\,\mathrm{d}\phi_{h}\,\mathrm{d}P_{T}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right) \cdot \\ &\left\{ S_{T}\left(\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\sin(\phi_{h}-\phi_{S}) \\ &+ \varepsilon F_{UT}^{\sin(\phi_{h}-\phi_{S})}\sin(\phi_{h}+\phi_{S}) + \varepsilon F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\sin(3\phi_{h}-\phi_{S}) \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}F_{UT}^{\sin\phi_{S}}\sin\phi_{S} + \sqrt{2\varepsilon(1+\varepsilon)}F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\sin(2\phi_{h}-\phi_{S}) \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}F_{LT}^{\cos\phi_{S}}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos(2\phi_{h}-\phi_{S}) \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}F_{LT}^{\cos\phi_{S}}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos(2\phi_{h}-\phi_{S}) \\ &F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} = \mathcal{C}\left[-\frac{\hat{h}\cdot k_{T}}{M}f_{1T}^{\perp}D_{1}\right] \\ &F_{UT}^{\sin(\phi_{h}-\phi_{S})} = \mathcal{C}\left[-\frac{\hat{h}\cdot k_{T}}{M}f_{1T}^{\perp}D_{1}\right] \\ &F_{UT}^{\sin(3\phi_{h}-\phi_{S})} = \mathcal{C}\left[-\frac{2(\hat{h}\cdot k_{T})(k_{T}\cdot p_{\perp}) + k_{T}^{2}(\hat{h}\cdot p_{\perp}) - 4\left(\hat{h}\cdot k_{T}\right)^{2}\left(\hat{h}\cdot p_{\perp}\right)}{2zM^{2}M_{h}}h_{1T}^{\perp}H_{1}^{\perp}\right] \\ &F_{LT}^{\cos(\phi_{h}-\phi_{S})} = \mathcal{C}\left[\frac{\hat{h}\cdot k_{T}}{M}g_{1T}D_{1}\right] \\ &Wo \end{aligned}$$



Leading twist formalism (higher-twist terms can be included)

Sivers  $\otimes$  Unpolarized fragmentation function

Transversity  $\otimes$  Collins Fragmentation Function

Pretzelosity © Collins Fragmentation Function

Worm Gear  $\otimes$  Unpolarized fragmentation function

## **Single Pion Beam Spin Asymmetries**



| N/q | U                  | L                           | Т                                    |
|-----|--------------------|-----------------------------|--------------------------------------|
| U   | $f^{\perp}$        | $g^{\perp}$                 | $h, \mathbf{e}$                      |
| L   | $f_L^{\perp}$      | $g_L^\perp$                 | $\mathbf{h}_{\mathbf{L}}, e_{L}$     |
| Т   | $f_T, f_T^{\perp}$ | $\mathbf{g_T}, g_T^{\perp}$ | $h_T, e_T, h_T^{\perp}, e_T^{\perp}$ |

CLAS12, S. Diehl et al., Phys. Rev. Lett., 128, 062005, (2022), [hep:ex] 2101.03544



Multidimensional analysis performed

Data sensitive to the  $eH_{1}^{\perp}$  (DCSB) and  $g^{\perp}D_{1}$  (quark gluon correlation)

For single-pion SIDIS - e(x) is accessible only when the transverse momentum of the final hadron is not integrated out



- First measurement of dihadron A<sub>111</sub> and extraction of e(x): IFF measured at Belle combined with CLAS results
- Twist-3 PDF (quark gluon correlations): related to quark contributions to nucleon mass
- Boer-Mulders force:  $\bot$  force exerted by color field on a  $\bot$  polarized struck quark in an unpolarized nucleon

## **Pion Multiplicities**

Example  $p_{\tau}^2$  integrated  $\pi^0$  multiplicity for

x-Q<sup>2</sup> Bin 1 with LO 1 $\sigma$  theory curves

- Pion multiplicities describe the number of produced pions in the five-dimensional SIDIS phase space (x, Q<sup>2</sup>, z,  $p_T^2, \phi_h$ ) per number of DIS events in (x, Q<sup>2</sup>) phase space.
- $\text{Directly related to the } \mathsf{D}_{1}(z) \text{ FF } m_{N}^{h}(x, z, \mathbf{P}_{hT}^{2}) = \frac{\pi}{\sum_{a} e_{a}^{2} f_{1}^{a}(x)} \sum_{a} e_{a}^{2} f_{1}^{a}(x) \frac{D_{1}^{a \to h}(z)}{D_{1}^{a \to h}(z)} \frac{e^{-\mathbf{P}_{hT}^{2}/\left(z^{2} \langle \mathbf{k}_{\perp,a}^{2} \rangle + \langle \mathbf{P}_{\perp,a \to h}^{2} \rangle\right)}}{\pi \left(z^{2} \langle \mathbf{k}_{\perp,a}^{2} \rangle + \langle \mathbf{P}_{\perp,a \to h}^{2} \rangle\right)}$
- Neutral pion results further serve as a test on the isospin symmetry between neutral and charged pion FF

Example  $p_T^2$  integrated  $\pi^+$  multiplicity for x-Q<sup>2</sup> Bin 1 and 10 with LO theory curves (CTEQ and Sassot)



M. Żurek - 3D Structure at CLAS12

## $\text{Cos}\phi_{h}$ and $\text{Cos}2\phi_{h}$ Moments of the SIDIS cross section

- $\cos(\phi_h)$  and  $\cos(2\phi_h)$  moments of unpolarized SIDIS cross-section for  $\pi^+$  using hydrogen target
- High-precision study of the moments which probe the Boer-Mulders function and Cahn effect
- The high-statistics data will, for the first time, enable a multidimensional analysis over a large kinematic range of  $Q^2$ , y, z, and  $P_{\tau}$ .



## **Current and Target Fragmentation Region Correlations**



Fracture functions accessible in "Back-to-Back" production

- One current-fragmentation region (CFR) hadron h<sub>1</sub>
- One target-fragmentation region (TFR) hadron h,

Fracture functions: the probability for the target remnant to form a certain hadron given a particular ejected quark

CLAS12 Preliminary, T. Hayward, Spin23



M. Żurek - 3D Structure at CLAS12

## **Selected GPD results**

## **GPDs and Angular Orbital Momentum**

Connection to the **proton spin**:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[ H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right] \qquad J_{q} = \frac{1}{2} \Delta \Sigma + L_{q}$$

| N / q | U | L          | Т                  |
|-------|---|------------|--------------------|
| U     | H |            | $E_T$              |
| L     |   | $	ilde{H}$ | $	ilde{E}_T$       |
| Т     | E | $	ilde{E}$ | $H_T \ 	ilde{H}_T$ |

4 chiral-even and 4 chiral-odd quark **GPDs at leading twist** for a spin-½ hadron

mi

 $x+\varepsilon$ 

 $H, E, \widetilde{H}, \widetilde{E}$ 

0,9

Accessed via hard exclusive processes: cross section and asymmetries

- Deep virtual Compton scattering (DVCS) and hard exclusive meson production (HEMP)
- H, E accessed in vector meson production, all 4 chiral-even GPDs accessed in DVCS

#### **DVCS and access to GPDs**

- Experimental access to GPDs via Compton Form Factors
- Different configurations: p and e polarization, beam charge  $\rightarrow$  different CFFs
- proton + neutron DVCS  $\rightarrow$  flavor separation of GPDs

$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^{1} dx \, \boldsymbol{H}^q(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{t}) \left(\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon}\right)$$

## **GPDs and Angular Orbital Momentum**

Connection to the **proton spin**:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[ H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right] \qquad J_{q} = \frac{1}{2} \Delta \Sigma + L_{q}$$

| N / q | U | L          | Т                     |
|-------|---|------------|-----------------------|
| U     | H |            | $E_T$                 |
| L     |   | $	ilde{H}$ | ${	ilde E}_T$         |
| Т     | E | $	ilde{E}$ | $H_T \;\; 	ilde{H}_T$ |

4 chiral-even and 4 chiral-odd quark **GPDs at leading twist** for a spin-½ hadron

Interference between DVCS and Bethe-Heitler amplitude plays key role

• Allows to determine both magnitude and phase of the DVCS amplitude

$$\boldsymbol{\sigma} = |\mathcal{T}_{\text{DVCS}}|^2 + (\mathcal{T}_{\text{DVCS}}\mathcal{T}_{\text{BH}} + \mathcal{T}_{\text{DVCS}}\mathcal{T}_{\text{BH}}) + |\mathcal{T}_{\text{BH}}|^2$$

Slope of DVCS  $d\sigma/dt$  - determination of transverse extension of partons



$$\frac{\mathrm{d}\sigma^{\mathrm{DVCS}}}{\mathrm{d}t} \propto e^{-b|t|}$$

## **DVCS AND TCS AT CLAS12**

G. Christiaens et al. (CLAS), Phys. Rev. Lett. 130 (2023)



#### Beam spin asymmetry for DVCS on the proton

## Beam-spin asymmetries in the extended valence region

- Many kinematics never covered before
- In previously measured kinematics, the new data are shown to be in good agreement with existing data and improve the precision of GPD fits
- Sensitivity to Im **%**, the imaginary part of the CFF
- corresponding to the GPD H

First-time measurement of nDVCS with detection of the active neutron in progress

## **DVCS AND TCS AT CLAS12**





(Timelike) Compton Scattering is the time reversal process of DVCS and allows us to test the universality of GPDs.

#### Photon polarization asymmetry

- Sensitive to Im(CFF)
- Comparison to DVCS allows to test the universality of GPDs especially the imaginary part of H

#### Forward-backward asymmetry

- Real part of the CFF and nucleon D-term
- Relates to mechanical properties of the nucleon (quark pressure distribution)

## HARD EXCLUSIVE MESON PRODUCTION



- DVMP offers access to the chiral-odd GPDs with separate psueodscalar and vector meson measurements providing information on the flavor dependence.
- Chiral odd GPDs provide access to information on proton anomalous tensor magnetic moment, proton tensor charge and more.

### **Summary**

- The CLAS12 facility at JLab offers an exceptional platform for conducting studies that are sensitive to nucleonic structure. This is primarily attributed to its impressive luminosity and comprehensive 4π coverage.
- Within the initial years of operation, CLAS12 has released several publications based on unpolarized H<sub>2</sub> data. Notably, many these publications introduced groundbreaking measurements for the first time.
- As we transition into the second phase of operations, we anticipate an exciting array of diverse measurements. This phase will encompass various aspects such as asymmetries, cross sections, differing energy levels, and a wide range of target materials and polarizations.

# Backup

## **Longitudinal Spin Structure**

- Decades of studies in Deep Inelastic Scattering, as well as Semi-Inclusive Deep Inelastic Scattering and proton-proton collisions
- Polarized DIS cross section studied at SLAC, CERN, DESY, JLab encodes information about helicity structure of quarks inside the proton (double spin asymmetries)



## **Longitudinal Spin Structure**

- Decades of studies in Deep Inelastic Scattering, as well as Semi-Inclusive Deep Inelastic Scattering and proton-proton collisions
- Semi-Inclusive Deep Inelastic Scattering with charged pions and kaons adds sensitivity to flavor-separated quark helicities via the fragmentation functions D<sub>a</sub><sup>h</sup>(z,Q<sup>2</sup>)
  - valence parton content of h relates to the fragmenting parton flavor, particularly at high z z fractional energy of the final-state hadron z = E<sup>h</sup>/v

Photon-nucleon asymmetry for SIDIS  

$$A_{1}^{h} = \overbrace{\sigma_{1/2}^{h} - \sigma_{3/2}^{h}}_{\sigma_{1/2}^{h} + \sigma_{3/2}^{h}} \overbrace{dx \, dQ^{2} \, dz}^{IO} \propto \sum_{q} e_{q}^{2} q^{+(-)}(x, Q^{2}) D_{q}^{h}(z, Q^{2})$$

$$A_{1}^{h}(x, Q^{2}, z) = \frac{\sum_{q} e_{q}^{2} \Delta q(x, Q^{2}) D_{q}^{h}(z, Q^{2})}{\sum_{q'} e_{q'}^{2} q'(x, Q^{2}) D_{q'}^{h}(z, Q^{2})}$$
Experimental access through double spin asymmetries (analogous to DIS)

• Sensitivity to sea quarks at low x from  $A_1^{\pi}$  ( $\Delta \overline{u}$ ),  $A_1^{\pi}$  ( $\Delta \overline{d}$ ),  $A_1^{\kappa}$  ( $\Delta s$ )

 $\sigma^{\text{SIDIS}} = \sigma \otimes \text{PDF} \otimes \text{FF}$ 

## Longitudinal Spin Structure - Where Are We Going?



Current DIS Data: Down to  $x \approx 0.005$  $Q^2 \approx 1-100 \text{ GeV}^2$ 



- Access to gluon spin through g<sub>1</sub> scaling violation
- different  $\sqrt{s}$  settings to maximize kinematic coverage