Imaging QCD Dynamics with Jet Substructure

Ian Moult Yale

Jet Substructure!

Jet Substructure

• Jet substructure has emerged as a central new technique at colliders:

Innovative Search Techniques

Novel Probes of QCD Dynamics

• Has evolved well beyond its origin to have a large impact on BSM, SM, high energy QCD and nuclear physics.

Decoding Energy Flux

• Subtle questions about QCD are imprinted in collider energy flux:

 Requires development of field theoretic techniques to interpret correlations in terms of the dynamics of the underlying field theory.

Outline

• Decoding Energy Flux

• Scaling Behavior of Quarks and Gluons

 Imaging Intrinsic and Emergent Scales of QCD

Decoding Energy Flux

Decoding Energy Flux

 In condensed matter physics or cosmology we decode the underlying dynamics using correlation functions.

• What is the analog for collider physics?

Defining the Problem

• What is a detector?

• To be able to understand subtle signals in energy flux, we must understand what a detector is in Quantum Field Theory.

Calorimeter Cells in Field Theory

 Calorimeter cells can be given a field theoretic definition in terms of light-ray operators. [Hofman, Maldacena] [Korchemsky, Sterman]

 Provides a sharp link between experimentally measurable observables and the underlying QFT.

Energy Correlators: Reality

• Imaging the confinement transition with Jet Substructure!

Energy Correlators: Reality

• For more detailed talks on aspects of energy correlators, see:

• Andrew Tamis

Wenqing Fan

• Ananya Rai

• Jack Holguin

Scaling Behavior of Quarks and Gluons

Scaling Behavior in QFT

• Scaling behavior in Euclidean regime well understood.

λ -point of Helium

The OPE Limit of Lightray Operators

• Energy flow operators admit a Lorentzian OPE: "the lightray OPE"

[Hofman, Maldacena]

[Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov] QCD: [Dixon, Moult, Zhu]

ullet Predicts universal scaling behavior in correlations of energy flux at energies $E\gg \Lambda_{\rm QCD}$. See early work by [Konishi, Ukawa, Veneziano]

Scaling Behavior in Jets

[Komiske, Moult, Thaler, Zhu]

[Dixon, Moult, Zhu] [Lee, Mecaj, Moult]

• The $\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2)$ OPE inside high-energy jets!

 Beautiful scaling behavior in energy flux, even in complicated hadronic environment!

Scaling Behavior in Jets

Andrew Tamis, Ananya Rai.

 Measurements from ALICE, CMS and STAR from 15 GeV to 1784 GeV recently released!

• Dominated by classical scaling. Can we accurately measure anomalous scaling?

The Spectrum of a Jet

ullet The light-ray OPE predicts that the N-point correlators develop an anomalous scaling that depends on N.

• Directly probes the spectrum of (twist-2) lightray operators from asymptotic energy flux.

Anomalous Scaling of 3/2 Ratio

Anomalous scaling measured from 15 GeV to 1784 GeV!

$$\frac{\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_3 \rangle}{\langle \mathcal{E}_1 \mathcal{E}_2 \rangle} \sim \frac{\langle \mathbb{O}^{[3]} \rangle}{\langle \mathbb{O}^{[3]} \rangle} \sim R_L^{\gamma(4) - \gamma(3)}$$

The Strong Coupling

• Proof of principle α_s can be extracted from jet substructure in complicated hadron collider environment: 4% accuracy.

Hope to use high energies of the LHC to resolve previous tensions in

 α_s extractions.

$$\alpha_s(m_Z) = 0.1229^{+0.0040}_{-0.0050}$$

 $= 0.1229^{+0.0014(stat.)+0.0030(theo.)+0.0023(exp.)}_{-0.0012(stat.)-0.0033(theo.)-0.0036(exp.)}$

The Confinement Transition

Dynamics of Hadronization

• What are the dynamics of the hadronization process?

The Confinement Transition

 Energy correlators allow the hadronization process to be directly imaged inside high energy jets: transition from interacting quarks and gluons and free hadrons clearly visible!

Beyond Energy Flux

The Space of Detectors

- Details of the hadronization process are encoded in the quantum numbers (charge, flavor, ...): By definition, energy flux is insensitive!
- What is the space of detectors over which we can gain theoretical control?

• More general observables can be calculated by combining factorization into universal matrix elements, with the Renormalization Group.

• Tremendous recent progress in understanding renormalization group evolution of functions characterizing correlations in the hadronization

process (beyond DGLAP).

• Enables the calculation of correlations on energy flux carried by hadrons of specific quantum numbers: e.g. $\langle \Psi | \mathcal{E}_+(\hat{n}_1) \cdots \mathcal{E}_-(\hat{n}_k) | \Psi \rangle$

Charged Energy Flux

[Lee, Moult]

- Opposite sign hadrons exhibit enhanced small angle correlations relative to like sign hadrons.
- Not electromagnetic in nature: generated by hadronization!

 How far can we push into the confinement transition? Experimental measurements will be crucial.

Identifying Intrinsic and Emergent Scales of QCD

Imaging Emergent and Intrinsic Scales of QCD

 Understanding of jets in vacuum allows them to be used as well calibrated probes in more complicated systems: hot and cold nuclear

- The QGP introduces a number of new scales into the problem.
- Here we will consider the simplest case of a static medium.
- We will focus on one scale, $\theta_L \sim \frac{1}{\sqrt{LE}}$, which determines the angle at which splittings resolve the medium

• QGP scales cleanly imprinted in two-point correlation.

Modifications persist in realistic simulation with dynamic medium.
Provides sensitivity to Debye mass.

[Yang, He, Moult, Wang]

• What does it look like in data?

Application II: Imaging Cold Nuclear Matter

- EIC will provide high energy collisions on a variety of nuclei.
- Allows for the study of medium modification in a simplified setting.

[Devereaux, Fan, Ke, Lee, Moult]

• The size of the nucleus represents a clear physical scale that will be imprinted in the angular structure of the correlator.

Application II: Imaging Cold Nuclear Matter

• Nuclear sizes cleanly imprinted into correlators.

- Achieve femtometer resolution from asymptotic energy flux!
- Provides a common language from hot to cold QCD.

Summary

• Jet Substructure provides new ways to study the dynamics of QCD.

• Correlation functions, $\langle \mathcal{E}(n_1)\cdots\mathcal{E}(n_k)\rangle$, provide a sharp link between theory and experiment.

 A variety of recent measurements shed new light on energy flux in QCD!

