2ND WORKSHOP ON ADVANCING THE UNDERSTANDING OF NON-PERTURBATIVE QCD USING ENERGY FLOW, NOV 6 - 9, 2023

sPHENIX Heavy Flavor Overview

Jin Huang For sPHENIX Collaboration

See also: Nov-7 D. Anderson, Nov-9 C. Hughes, J. Osborn

Hadronic Calorimeter(s) **1.4 T super conducting magnet Electromagnetic Calorimeter Micromegas Outer Tracker (TPOT) Time Projection Chamber (TPC) Event plane detector (EPD) M.B.** and Event Plane Detectors Intermediate Tracker (INTT) **MicroVertex Detector (MVTX)** DAQ: 15 kHz calo trigger + 10% streaming 10 GB/s data logging Jin Huang <jihuang@bnl.gov> CFNS 2nd npQCD workshop

sPHENIX Tracking Detectors

See also: Nov-9 C. Hughes

SPHENIX L

sPHENIX Tracker 2023-08-23, Run 25926 - All EBDCs, BCO 128330850911 0-Field Cosmics Data Linear fit to MVTX, INTT, and TPOT hits only

Cosmic Data, B=0

Precision vertex trackers

Brookhaven National Laboratory

• **MVTX**: MAPS based vertex tracker, 3 layers

- Using staves from ALICE ITS2 upgrade
- ALPIDE chip, 30um pitch, Low mass (~0.3% X₀)
- 5um position resolution, 5-10us integration time
- **INTT**: silicon strip tracker, 2 layers
 - 78 um pitch, provides timing tag resolving bunch crossing

Active length ~ 30 cm

Diameter ~ 8 cm

Precision vertex trackers

Brookhaven National Laboratory

- MVTX: MAPS based vertex tracker, 3 layers
 - Using staves from ALICE ITS2 upgrade
 - ALPIDE chip, 30um pitch, Low mass (~0.3% X₀)
 - 5um position resolution, 5-10us integration time
- INTT: silicon strip tracker, 2 layers
 - 78 um pitch, provides timing tag resolving bunch crossing

DIOD

K^+ **Cleanly separate open bottom meson via DCA** 3.9% 79% DCA resolution Precision vertex + fast DAQ \rightarrow large HF sample Simulation: 25 minutes of data at 15 kHz collision rate 0.01 (0.001) (0.009) Candidates / (6.00 MeV/c²) sPHENIX Simulation Simulated Data **sPHENIX** simulation $\sqrt{s_{NN}} = 200 \text{ GeV}$ (DCA) 0.008 م 0.007 م 25 DCA' $D^0 \rightarrow K^- \pi^+$ mis-ID $D^0 \rightarrow K^- \pi^+$ 22x10⁶ min-bias Hijing AuAu events with pile-up 50 kHz MB AuAu Comb. Bkg. 25 minutes of data at 15 kHz collision rate 20 • DCA_{xy} $D^0 p_{\tau} \ge 4 \text{ GeV/c}$ DCA, 0.006 0.005 0.004 0.003 0.002 Pull 0.001E 1.75 1.8 1.85 1.9 1.95 m(K π⁺) [GeV/c²] 10 p_T [GeV]

Main tracker: Time projection chamber (TPC)

Installed TPC in sPHENIX

Brookhaven National Laboratory

Jin Huang <jihuang@bnl.gov>

SPHENIX

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 43 Au+Au sqrt(s_{NN})=200 GeV

sPHENIX hidden heavy flavor

- Suppression with clear distinction of three Upsilon states
- Color dipoles probing the QGP at three length scales

Streaming readout electronics

Plan to recording 10% p+p collisions in hybrid streaming DAQ \rightarrow 2-3 orders of magnitude increase in soft-HF statistics

sPHENIX streaming DAQ for tracker

Global Timing Module (NSLS II/sPHENIX) Receiving from RHIC RF low glitter clock source

MVTX RU, 200M ch INTT ROC, 400k ch ALPIDE (ALICE/sPHENIX), FPHX (PHENIX)

 TPC FEE, 160k ch
 BNL-712 / FELIX v2 x38 (ATLAS/sPHENIX)

 SAMPAv5 (ALICE/sPHENIX)
 FELIX Ref: 10.1109/tim.2019.2947972

Streaming-DAQ enabled scientific connection: e.g. gluon dynamics via heavy flavor transverse spin asym.

ional Laboratory

Access b-quark suppression/v2 via non-prompt D

Bringing high precision non-prompt-D suppression and flow to RHIC

News from beam use proposal 2020 – hadronization

- STAR and ALICE collaboration reported enhanced charm baryon to meson ratio → challenging hadronization models
- sPHENIX streaming readout will deliver first p + p measurement at RHIC
- sPHENIX will also map out the Λ_c/D ratio over momentum dependence

DOKNAVEN

Calorimeter system: Outer HCal

HCal: steel scintillator sampling calorimeter

- Hadron dE/E ~ 14% + 65%/VE
- 0.1x0.1 towers
- ~5 hadronic interaction length for full calo stack

Calorimeter system: Inner HCal

Inner HCal: Al-scintillation tile sampling calorimeter Mechanical support for EMCal + EM-shower tail catcher + constraint longitudinal position of hadronic shower

Jin Huang <jihuang@bnl.gov>

Calorimeter system: EMCal

- EMCal: Scintillator Fiber Tungsten sampling calo.
- EM dE/E < 5% + 16%/VE
- 0.025x0.025 towers

Sector 59

Secto

sPHENIX Experiment at RHIC Data recorded: 2023-07-16 00:54:00 EST Run / Event: 21707 / 3194 Collisions: Au + Au @ $\sqrt{S_{NN}}$ = 200 GeV

See also: Nov-9 J. Osborn, and more jet study in Nov-7 D. Anderson

<jihuang@bnl.gov

D-tagged jets

- Access charm jet and easy background rejection
- Study of heavy-quark initiated jet structure and parton shower
- Enabled by abundant D0 statistics + jet capability

Jin Huang <jihuang@bnl.gov>

23

sPHENIX bottom quark jet

Brookhaven National Laboratory

Jin Huang <jihuang@bnl.gov>

Bottom quark jet pairs \rightarrow Enhanced sensitivity

25

b-jet vs light jet \rightarrow differentiating energy loss mech.

b-jet Flow signature \rightarrow pathlength dependence energy loss

Jin Huang <jihuang@bnl.gov>

27

Summary

 \bigcirc

- Beam commissioning for all subsystems in 2023, despite early termination of the RHIC run
- p+p[↑] run starts soon in early 2024
- Precision HF Physics in HI and p+p[↑] on HQ diffusion, energy loss, hadronization, and spin dynamics, enabled by precision tracker, full calorimetric jet, and streaming DAQ

Questions?

Extra Information

Jin Huang <jihuang@bnl.gov>

Streaming readout status at sPHENIX

- All three sPHENIX tracking detector uses streaming readout
- Developed plan to take 10% streaming data for heavy flavor physics program commended by RHIC PAC.

RHIC PAC 2020 report

We commend sPHENIX for developing the continuous streaming readout option for the detector, which increases the amount of data that can be collected in Run-24 by orders of magnitude. In particular in the sector of open heavy flavor, this technique will give access to a set of qualitatively novel measurements that would otherwise not be accessible. Given the tight timeline for completing the RHIC physics program before construction of the EIC begins, this is a tremendous and highly welcome achievement.

Charm v_1 (via prompt D_0) \rightarrow initial geom. & *B*-field

• Δv_1 : Initial magnetic field

Brookhaven National Laboratory

sPHENIX calorimetric jets and b-jet tagging

Combining calo.-jet and precision vertex: *b*-jet tagging

- Demonstrate b-jet capability: tagging algorithms evaluated using full detector HI simulation
- Reaching a promising working point in central Au+Au collisions

HF resonance reconstruction

- sPHENIX integration of KFParticle:
 - Generic resonance reco, also used in CBM, STAR , ALICE
- Used in mock data challenges \rightarrow day-1 data

Possible runs beyond 2025

Small collision system

Laboratory

If opportunity arise in 2026-27, OO, ArAr runs

 pA: Mystery of non-zero HF v2 but lack of quenching. Small-A collision may bridge the gap from pA to large-AA

The tracking stack in the 2019 test beam

Jin Huang <jihuang@bnl.gov>

Main tracker: Time projection chamber (TPC)

- Gateless and continues readout with GEM (similar to the ALICE TPC upgrade)
- Fast drift, low T diffusion, low ion backflow: 50:50 Ne-CF4 gas, 13 us drift
- 48 layer of pad rows, zigzag pad
- SAMPA v5 ASIC with 80ns shaping time
- dp/p ~ 1% at 5GeV/c

Brookhaven National Laboratory

Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

RHIC PAC-2021 Report: "sPHENIX construction, installation and operation to accomplish its science goals is now the overarching priority for RHIC for the next 4 – 5 years."

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	$ z < 10 { m cm}$
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb^{-1}}$
					0.01 pb ⁻¹ [10%- <i>str</i>]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹