Heavy Flavor and Quarkonia in PHENIX

Brandon Blankenship (Vanderbilt University) for the PHENIX collaboration

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow November 8, 2023

Supported in part by DOE grant Grant No. DE-FG05-92ER40712

Heavy flavor as a probe of the QGP

• Large mass of heavy quarks -> only produced in initial hard scatterings

Heavy flavor as a probe of the QGP

- Large mass of heavy quarks -> only produced in initial hard scatterings
- Energy loss and flow effects as they pass through QGP —> particle yields and angular distributions can be modified by interaction with the QGP

Heavy flavor particles as a probe of the QGP

- Large mass of heavy quarks —> only produced in initial hard scatterings
- Energy loss and flow effects as they pass through QGP —> particle yields and angular distributions can be modified by interaction with the QGP
- Heavy flavor particles reconstructed or their semi-leptonic decays —> understanding of heavy quark interaction with QGP medium

$J/\Psi R_{AA}$ and v_2 as probes of QGP

- Quarkonium suppression probes T and density of QGP
- \bullet Multiple mechanisms for J/ Ψ flow
 - Path length dependent dissociation
 - Charm equilibration and J/Ψ regeneration
 - Primordial J/ Ψ equilibration small effect

Rapidity dependence of QGP interactions

- Rapidity dependence of flow gives access to the longitudinal dynamics of QGP
- Heavy flavor and quarkonia dynamics have rapidity-dependent initial state effects
- PHENIX has unique capabilities at RHIC for separating charm and beauty with decay vertex determination at forward rapidity

PHENIX detector

- Central arms: |y|<0.35
 - electrons, hadrons, and photons
- Muon arms: 1.2<|y|<2.2
 - muons and hadrons
- VTX-FVTX: Precise HF tracking and ID over full PHENIX rapidity range

J/Ψ R_{AA} and coalescence

v_2 of J/ Ψ at RHIC and LHC

- At LHC energies, J/Ψ has significant v_2 across rapidity
- At RHIC , v_2 of J/ Ψ is consistent with zero both at mid- and forward rapidity > Improvement needed for RHIC results to assess the role of coalescence

J/ Ψ and $\Psi(2S)$ modification

- The modification of J/Ψ and $\Psi(2S)$ at forward rapidity are both reasonably described by models that include cold nuclear matter effects
- At backward rapidity there is a clear difference between J/Ψ and Ψ(2S)

Ψ(2S) modification

- At both forward and backward rapidity the contribution from CNM effects alone fails to describe the modification of $\Psi(2S)$
- Strong evidence for final state effects in small systems

Inclusive heavy flavor v_2 and R_{AA}

- Electrons from inclusive heavy flavor show significant R_{AA} suppression and non-zero v_2
- Both measurements show significant differences compared to neutral pions
 - Indicates mass ordering of particle interactions with QGP
- Do separated c and b exhibit the same mass ordering behavior?

R_{AA} of separated *charm* and *beauty*

- Clear mass ordering between b->*l* and c->*l* at RHIC and LHC energies
- R_{AA} measurement of open heavy flavor at forward rapidity will provide further insights

PHENIX separated c and b v₂

- $v_2(c \rightarrow e)$ is positive with ~3.5 sigma and follows trend of charged hadron v_2
- v₂(b->e) indicates positive with 1.1 sigma
- ${\scriptstyle \bullet}$ Mass ordering is seen, as in R_{AA}

PHENIX muon arm heavy flavor analysis

• Secondary vertex determination (FVTX)

Extracting heavy flavor in the muon arms

simulation with HF contribution excluded

ENIX

• Determine heavy flavor muon v_2 in the inclusive muon sample:

$$v_2^{HF} = \frac{1}{F^{HF}} (v_2^{\mu} - (1 - F^{HF}) v_2^{LF})$$

3.5

3

2.5

p_{_} (GeV/c)

2

1.5

Flow of charged hadrons and heavy flavor muons at forward rapidity

- Hint of rapidity-dependence of charged hadron v_2 , while open heavy flavor v_2 results are consistent with PHENIX results at mid-rapidity
- Takeaway: heavy flavor particles flow with the QGP, but less than charged hadrons

• Unlike charged hadrons, no rapidity-dependence for heavy flavor v₂

Summary

- PHENIX has many measurements (and ongoing analyses) using heavy flavor as a probe of the unique properties of the QGP
- Coalescence of $c\bar{c}$ pairs could explain the difference $\,$ between forward and midrapidity J/W R_{AA} results
 - J/ Ψ v₂ at RHIC has no rapidity dependence, but the results are not yet conclusive (ongoing analysis)
- In small systems HF probes indicate final state effects consistent with QGP formation
- v₂ and R_{AA} light and heavy flavor (c and b) show mass ordering at mid- and forward rapidity
 - No obvious rapidity-dependence for heavy flavor v_2 at RHIC energies
- Inclusion of the Run16 Au+Au 200 GeV dataset will double statistics for ongoing PHENIX heavy flavor analyses

Back-up

Radial distance of closest approach (DCA_r)

- DCA_r is determined by projecting the particle track determined by the FVTX onto a plane in the z-axis located at the initial collision point
- Essentially this is a measurement of the distance from the primary vertex at which a particle was produced, i.e. for a prompt particle $DCA_r = 0$
- With a precise measurement you can separate detected muons according the particle from which they decayed

3D visualization of DCA_r

r-z plane visualization of DCA_r

$\psi(2S)$ Modification at RHIC and LHC

• $\psi(2S)$ nuclear modification compared with Du & Rapp Transport Models

- $\circ~$ PHENIX prediction at RHIC energies shown in black
- $\circ~$ ALICE prediction at LHC energies shown in red

Cold Nuclear Matter Effects in p+A Systems

1 Gluon Shadowing/Anti-Shadowing:

Modification (suppression/enhancement) of heavy quark cross section due to modifications of the gluon nuclear parton distribution functions (nPDFs) in the target

2 Nuclear Absorption:

The break up of the bound J/ψ (or precursor state) in collisions with other target nucleons passing through J/ψ production point

3 Cronin Effect:

Modification of the $J/\psi p_T$ distribution due to multiple elastic scattering of partons

4 Parton Energy Loss:

The projectile gluon experiences multiple scattering passing through the target prior to J/ψ production, reducing the J/ψ rapidity

Model Overview

nCTEQ15 and EPPS16 NLO (Shao, et. al.)

 ${\circ}\,$ Reweighted using LHC $p{+}{\rm Pb}$ data, giving tighter J/ψ constraints

Nuclear Absorption Model

- Estimated from global fit to world data
- Added to Shao, et. al. at backward rapidity only

EPS09 NLO + Transport Model (Du & Rapp)

- Includes fireball, MC Glauber for initial conditions
- p_T broadening included
- Backward rapidity: Nuclear absorption added

PRL 121, 052004

JHEP 03, 015

PRC 87, 054910 2013