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Hyperon Spin correlations

A remarkable discovery:  hyperons get polarized in many (unpolarized) collision systems:Λ

[PRL (1976)]

AA

So far there is no complete description for this phenomena:

AA : hyperons’ spin aligns with angular momentum of (rotating) quark gluon plasma

= udsΛ

Smaller systems : some models describe polarization, but not full events
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[Nature (2017)]



Fig by Tu

= udsΛ

Spin-spin hyperon correlations can give important information about:

Hadronization dynamics and fragmentation

Initial state spin effects: extract hyperon 
polarization in polarized scattering experiments

How can spin correlations be washed away?
[Gong, Parida, Tu, Venugopalan, 2107.13007]
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Hyperon Spin correlations
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= udsΛ

How can spin correlations be washed away? [Gong, Parida, Tu, Venugopalan, 2107.13007]
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Hyperon Spin correlations

a= # strange pairs b= # light quarks
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[from J. Vanek at SPIN 23]



So far, description constrained to perturbative approaches or modeling of static strings 

How to go beyond ?

Euclidean Lattice QFT Minkowski Lattice QFT

Well established non-perturbative QFT formulation

Hadronization and fragmentation are inherently 
Minkowski and thus one can not use traditional 
lattice

Requires quantum devices

Description always in 1+d 
dimensions so no sign problem !

Many caveats, so far no full scale machine exists 
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Towards describing spin correlations from QFT



Working models mainly constrained to 1+1d, with the QCD analog being the Schwinger model

HSchwinger =

∫
dx

1

2
E2(x) +

Nf∑

f=1

ψ̄f (x)(−iγ1∂1 +
gγ1A1(x) +mf )ψf (x)

HSchwinger =

∫
dx

1

2
E2(x) +

Nf∑

f=1

ψ̄f (x)(−iγ1∂1 +
gγ1A1(x) +mf )ψf (x)

Shares many properties similar to QCD… 

Chiral condensate

Confining fermion potential

[Schwinger, 1951]

… but also important differences

Integrable in the massless limit

No dynamical gauge fields
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Massive Schwinger model and pair production



Schwinger effect: intense electric fields can lead to proliferation of particle pairs out of the vacuum

Pair-production rate computed in the semi-clasical limit (no back-reaction)

[Kasper et al, 1608.03480]

[Schwinger, 1951]

Action on the vacuum with strong field

[Hebenstreit, Berges, Gelfand, 1307.4619]
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Massive Schwinger model and pair production



Schwinger effect: intense electric fields can lead to proliferation of particle pairs out of the vacuum

Pair-production rate computed in the semi-clasical limit (no back-reaction) [Schwinger, 1951]

[Hebenstreit, Berges, Gelfand, 1307.4619]
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Massive Schwinger model and pair production

Qualitatively very close to standard hadronization picture !



H = HSchwinger +Hspin

HSchwinger =

∫
dx

1

2
E2(x) +

Nf∑

f=1

ψ̄f (x)(−iγ1∂1 +
gγ1A1(x) +mf )ψf (x)

HSchwinger =

∫
dx

1

2
E2(x) +

Nf∑

f=1

ψ̄f (x)(−iγ1∂1 +
gγ1A1(x) +mf )ψf (x)

where the first term is the 4 flavor Schwinger model

Spin flips between different species are induced by the term

Since there is no true notion of spin in 2d, we consider the following toy theory

We take the mapping 
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A 1+1d toy model: Hamiltonian



Given this model, the spin Hamiltonian is obtained by

Introducing lattice Kogut-Susskind fermions:

Performing a Jordan-Wigner transformation, e.g.:

Integrating out the gauge field using Gauss’ law:
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A 1+1d toy model: simulation

Fermionic site

Electric field

ψn

L(n)

Electron Positron

Naive lattice fermion

Applying Jordan Wigner

Imposing Gauss’s law

QFT dof’s

Spin chain



D

Ai1i2···in = Cjk
i1
Ckl

i2 · · ·

|ψ〉 =
∑

ij

Ai1i2···in |i1〉 |i2〉 |i3〉 · · · |in〉

Basic idea: Lowest states of a gapped local Hamiltonian obey the area-law for entanglement entropy
i.e. they are highly constrained by locality 

S ∼ logD

Powerful classical correspondent of quantum computers in 2d

Fails when: Long time evolution Near critical points

i1 i2 in i1 i2 in
j k lj k lj k lj k l

CA C C CCC
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Numerically evolving the system: tensor networks
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Time evolved state shows residual spin symmetry left after explicitly breaking the SU(4) flavor group
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Numerical results: quark bilinear
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Numerical results: heavy spin-spin correlator

We consider the heavy fermionic correlator

Larger h-l and l-l : larger correlations

Only Larger h-l : smaller correlations

Only Larger l-l : small difference to initial condition
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Numerical results: heavy spin-spin correlator

We consider the heavy fermionic correlator

Larger h-l and l-l : larger correlations

Only Larger h-l : smaller correlations

Only Larger l-l : small difference to initial condition
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Main shortcomings tied to limitations of long time evolutions for TNs; some ways to move forward:

Heff = Hh
0 + gh

∑

n

(−1)nχ†
h,↑(n)χh,↓(n) + g2h

∑

n

χ†
h,↑(n)χh,↓(n)χ

†
h,↓(n)χh,↑(n) + h.c.+O(g3h)

Heff = Hh
0 + gh

∑

n

(−1)nχ†
h,↑(n)χh,↓(n) + g2h

∑

n

χ†
h,↑(n)χh,↓(n)χ

†
h,↓(n)χh,↑(n) + h.c.+O(g3h)
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Numerical results: ongoing

Exact diagonalisationIntegrate out light fermions

Classical stat. simulations



Lambda spin correlations offer the opportunity to study initial and final state 
effects. Such studies can be ideally performed at the EIC.
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Conclusion 

Final state effects might give access to non-perturbative final state dynamics. 
Their current theoretical understanding is limited.

New quantum technologies are ideally posed to study realtime non-
perturbative dynamics

We propose a simple toy model to capture the time evolution of hyperon spin 
correlations in a QCD string-like environment.

Exploratory numerical results agree with naive physical picture: higher 
fermion density leads to a growth of correlations.


