Recent CMS open heavy flavor highlight(s)

Alibordi Muhammad On behalf of the CMS Collaboration

2nd Workshop on advancing the understanding of non-perturbative QCD using energy flow November 6-9, 2023 Center for Frontiers in Nuclear Science Sony Brook University

LHC / HL-LHC Plan

Complexe des accelerateurs du CERN

Current CMS Status

Hypothesis : that this workshop is aimed to understand the synergies between the <u>UPCOMING EIC</u> prospects and the <u>ONGOING LHC</u> prospects

Physics in the non-perturbative sector

-QCD : as a coherent theory, perturbative at short distances (weak coupling) and confining (strong coupling) at large distances (quark confinement \rightarrow bound state \rightarrow hadrons)

-Weak coupling : identification of processes where a <u>perturbative prediction may be directly tested is far</u> from trivial : one can obtain observables such as multiplicity or spectra of secondaries from hard process with large Q^2 transfer

-Strong coupling : this large Q^2 transfers defines the characteristics of the hard processes - down to scale $Q^2 \sim \Lambda_{OCD}$ where the hadronization takes over (<u>we will be talking about b, c hadrons</u>)

-Important properties of b, c quarks : due to the short time scale characterizing their production, heavy quarks experience the whole evolution of the system

-In Pb-Pb (*p*-Pb) collisions : measurement of hadrons containing heavy quarks provides crucial information on the in-medium parton energy loss

-In *pp* collision : measurements of open heavy-flavor hadron production are relevant tests of pQCD model calculations

-Hadrons with b and c quarks : In this talks some of the important properties, that CMS has investigated in both heavy ion collisions and proton proton collision in the decays of the hadrons where b or c is one of the constituents, the studies of the following decay processes will be shown in this talk :

 $(pp): B_c^+ \to J/\psi\tau^+\nu_{\tau}, B^\pm \to K^\pm \ell^+ \ell^-, (Pb-Pb/p-Pb)\Lambda_c^+ \to pK^-\pi^+, B^+ \to J/\psi K^+, B_s^0 \to J/\psi\phi$ $QCD-PDG-REVIEW, \underline{2007.13419}$

B-Physics Results

Lepton flavor universality violation

Origin of the deviation : indicates violation of the Lepton flavor universality, a symmetry in the gauge sector - and an accidental near-symmetry of the Yukawa sector - of the standard model by which all leptons couple with the same strength

For the given decay processes :

 $B_c^+ \to J/\psi \tau^+ \nu_{\tau}, B^\pm \to K^\pm \ell^+ \ell^-$ the unknown QCD corrections enters through the matrix elements of the decays in terms of the form factors (QCD review, PDG)

Lattice, Lepto-guarks model in the non-perturbative and perturbative limits of QCD has tried to incorporate additional couplings by considering additional particle or lattice corrections

Please refer to some literature :

Lattice QCD results form factor ($B \rightarrow K$) extrapolation is residing far from exact SU(3) symmetry : extra momentum contribution in the matrix elements through the form factors

This talk :
$$B_c^+ \to J/\psi \tau^+ \nu_{\tau}, B^\pm \to K^\pm \ell^+ \ell^-$$

$$R(J/\psi): B_c^+ \to J/\psi\tau^+\nu_\tau$$

<u>CMS-PAS-BPH-22-012</u>

$$R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})} \quad [J/\psi \to \mu^+\mu^-, \tau^+ \to \mu^+\nu_{\mu}\nu_{\tau}]$$

- 1. L1 trigger : events with 3 muons , leading $\mu : p_T > 5$ GeV, sub-leading $\mu : p_T > 3$ GeV , no p_T requirement for sub-sub-leading muon
- 2. 2 muons from the common vertex of J/ψ , and muon $(\mu^+\mu^-\mu^+)$ not originating from J/ψ vertex referred as 3rd muon
- 3. Offline selections : HLT : $J/\psi + \mu$, $d_{xy} < 0.05 \text{ cm}$, $d_0 < 0.2 \text{ cm}$, $B_c^+(3^{rd}\mu)\text{vextex} > 0.01\%$, $m_{B_c^+} < 10 \text{ GeV}$, $p_T^{\mu 1} > 6 \text{ GeV}$, $p_T^{\mu 2,\mu 3} > 4 \text{ GeV}$
- 4. Discriminator between $\mu \& \tau$ channel : $q^2 = (p_{B_c^+} p_{J/\psi})^2$, $p_{B_c^+} = m_{B_c^+}/m_{3\mu}^{vis} \cdot p_{3\mu}^{vis}$, $IP3D/\sigma_{IP3D}$, $L_{xy}/\sigma_{L_{xy}}$

 π, K : misidentified as μ : fakes, $H_b \rightarrow J/\psi(\mu^+\mu^-) + \mu^+$

1. HLT : μ_{trig} : $p_t > 9 \text{ GeV}$, $IP_{xy}/\sigma_{xy} > 6$, μ_2 : $p_t > 2 \text{ GeV}$, $\Delta z(\mu_{trig}, K^+) < 1 \text{ cm}$, $\Delta z(\mu_{trig}, mu_2) < 1 \text{ cm}$ 2. Offline selections : HLT : $p_T(K^+) > 1 \text{ GeV}$, $p_T(B^+) > 3 \text{ GeV}$, $L_{xy}/\sigma_{L_{xy}} > 1$, $P_{B^+\text{Vextex}} > 10^{-5}$, $\cos \alpha_{3D}(B^+) > 0.9$, $5.0 < m_{B^+} < 5.6 \text{ GeV}$

Heavy Ion Results

QGP, Nuclear modification factor and all that ...

-Quark epoch :

 $10^{-12} \sim 10^{-5}\,{\rm sec}, 10^{15}\,{\rm K}-10^{15}\,{\rm K}, 150\,{\rm GeV}-150\,{\rm MeV},$ possibility of the existence of the quark-gluon plasma in this epoch

-QGP formed in the heavy ion collision could unfold some early universe properties

-Indeed gravity was <u>already decoupled during the quark</u> <u>epoch</u>, still we do not know what was the <u>aftermath of the</u> <u>decoupling of $R_{\mu\nu\delta\gamma}$ </u>, on the other hand the <u>QFT in high</u> <u>temperature could study the properties of the hot QGP soup</u>, <u>thermal behaviors of the QGP soup can be linked to the</u> <u>thermal properties of the massive gravitating bodies in terms</u> <u>of entropies</u> ?

- interesting properties such as : nuclear modification factor (R_{AA}) (the ratio of the yield in Pb-Pb to the corresponding yield in pp collisions scaled by the number of binary nucleon-nucleon collisions), mean nuclear overlap function (T_{AA}) (average number nucleon-nucleon binary collisions normalized by pp inelastic cross section) are the indicating factors of how hot medium modifies the particle production compared to the simple superposition nucleon-nucleon collisions

CERN-THESIS-2011-263

Baryon Chemical Potential μ_B

This talk : Pb-Pb/p-Pb :
$$\Lambda_c^+ o pK^-\pi^+, B^+ o J/\psi K^+, B_s^0 o J/\psi \phi$$

$$\Lambda_c^+ \to p K^- \pi^+ \qquad \underline{\text{CMS-HIN-21-}}$$

Selection:

 $|\eta| < 1.2, p_T > 0.5 \,\text{GeV}(pp), > 1 \,\text{GeV}(\text{Pb-Pb}),$ $2.11 < m(\Lambda_c^+) < 2.45 \text{GeV}$, boosted tree is used to optimized the physics selection for pp and lead-lead collisions, the total charge of the signal $\Lambda_c^+ \to p K^- \pi^+$ (charged conjugate) is assigned +1(-1)

Fit :

global uncertainty for R_{AA} is 16.5%

Unbinned maximum likelihood fit : signal : triple Gaussian, combinatorial background : Chevyshev polynomial

The Λ_c^+ baryon yields for pp collisions are much higher than predicted by calculations with the general-mass variable-flavornumber scheme that use fragmentation functions obtained by fit-ting results from the OPAL and Belle collaborations, indicating a breakdown of the universality of charm guark fragmentation functions

Summary

1. We have a smooth detector operation now and looking forward to more challenging aspect : both detector development and physics

2. Results Presented :

B-Physics : $R(J/\psi) : B_c^+ \to J/\psi \tau^+ \nu_{\tau}$, $R(K) : B^{\pm} \ell^+ \ell^-$ Heavy Ion : $R_{AA} : \Lambda_c^+ \to pK^-\pi^+, B^+ \to J/\psi K^+ \& B_s^0 \to J/\psi \phi$

3. There are more analysis (due to time constrain I would invite you look at the CMS public results) **B-Physics** : Observation of $\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$ (CMS-PAS-BPH-22-002) **Heavy ion** : a. Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 TeV (Λ_c^+, D^0) (CMS-PAS-HIN-21-016)

b. Measurement of the B^+ differential cross section as a function of P_T (pPb) (<u>CMS-PAS-HIN-22-001</u>)

4. We are also looking forward to see the results of the Run-III data.

Bonus Slides

$$R(J/\psi): B_{c}^{+} \to J/\psi\tau^{+}\nu_{\tau}$$

$$\underset{\sigma}{\overset{\text{CMS Preliminary 59.7 fb^{-1}(13 \text{ TeV})}{\underset{\sigma}{\text{S}} 0.22}}$$

 π, K : misidentified as μ : fakes, $H_b \rightarrow J/\psi(\mu^+\mu^-) + \mu^+$

$$m(3\mu) < m_{B_c^+}, q^2 > 5.5 \, {\rm GeV}^2$$

 $IP3D/\sigma_{IP3D} > 2$

$$\begin{split} m(3\mu) < m_{B_c^+}, q^2 > 4.5 \, \mathrm{GeV}^2 \\ IP3D/\sigma_{IP3D} > 0 \end{split}$$

Channel	q ² range	2	Yield
$\mathrm{B^+} ightarrow \mathrm{K^+} \mu^+ \mu^-$	1.1–6.0 Ge	V^2 12	2.67 ± 55
$\mathrm{B^+} ightarrow \mathrm{J/}\psi(\mu^+\mu^-)\mathrm{K^+}$	8.41-10.240	GeV^2 728 (000 ± 1100
$B^+ \rightarrow \psi(2S)(\mu^+\mu^-)K$	+ 12.60-14.44	GeV ² 683	300 ± 500
Channel	<i>q</i> ² range	PF-PF yield	PF-LP yield
$B^+ \rightarrow K^+ e^+ e^- (\text{low-}q^2)$	$1.1-6.0{ m GeV}^2$	17.9 ± 7.2	3.0 ± 5.9
${ m B^+} ightarrow { m J/}\psi({ m e^+e^-}){ m K^+}$	$8.41 - 10.24 \text{GeV}^2$	4857 ± 84	2098 ± 58
$B^+ \rightarrow \psi(2S)(e^+e^-)K^+$	$12.60-14.44 \mathrm{GeV}^2$	320 ± 20	94 ± 11

5.4

5.2

5.2

5.4

CMS Preliminar

60 F

33.6 fb⁻¹ (13 TeV)

CMS-PAS-HIN-2

- 1. B^+ : production cross section with respect to the transverse momentum inclusively
- 2. B^+ : for the first time, in different charged particle multiplicities, in proton-lead collisions

Mention of the two more analysis in the summary

