

Probing jet substructure with 2 and projected 3-point energy correlators in pp collisions at ALICE at $\sqrt{s} = 13\text{TeV}$

Ananya Rai (ananya.rai@cern.ch)

for the ALICE Collaboration

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow

9th November 2023

Looking inside jets with N-point Energy Correlators

- Jets are an important tool to probe QCD experimentally.
- IRC safe jet-finding algorithms offer access to partons from initial hard scatterings useful probe of pQCD.
- Multi-scale objects: feature highlighted by energy correlators.

Introduction: N-point Energy Correlators

Theoretical definition:

$$\mathcal{E}(ec{n}) = \int\limits_0^\infty dt \lim_{r o \infty} r^2 n^i T_{0i}(t, rec{n})$$

$$\text{ENC}(R_L) = \left(\prod_{k=1}^N \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta \hat{R}_L) \, \frac{1}{(E_{\text{jet}})^N} \left\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots \mathcal{E}(\vec{n}_N) \right\rangle$$

Experimental definition:

Create a weighted histogram as a function of R_L (largest distance between N particles) with weights

$$ENC(R_L) = \sum_{i_1, i_2, ... i_k}^{i_N} \int dR_L rac{p_T^{i_1} p_T^{i_2} ... p_T^{i_N}}{p_{T, jet}^N} \delta(R_L - \Delta \hat{R}_L)$$

(ensemble averaged over jets)

2-point Energy Correlator (EEC)

Probes scale dependence of energy flow Jet evolution imprinted on slopes of the EEC

Projected 3-point Energy Correlator (E3C)

Probes shape dependence of energy flow + 1 --- 3 splittings

Preserves the scale of the correlation + slopes encode the scaling behavior of EEEC (theory)

Komiske et al., PhysRevLett.130.051901

Motivation: ENC

Theoretical

 Calculable in pQCD using techniques from Conformal Field Theory

<u>Dixon et. al, PhysRevD.100.014009</u> Kologlu et. al, JHEP01(2021)128

 Allows for a clear separation of pQCD and npQCD effects

Experimental

 Grooming and reclustering not necessary

 Allows for a clear separation of pQCD and npQCD effects

Motivation: E3C/EEC ratios

Theoretical

Access to anomalous dimensions

QFT operators have a scaling/mass dimension $\Delta_{\mathbb{O}}$. For e.g., in 3+1D, scalar field $[\phi] = 1$, fermion field $[\psi] = 3/2$. Quantum mechanical effects $\longrightarrow \Delta_{\mathbb{O}}$ gets shifted by "anomalous dimensions", $\gamma_{\mathbb{O}}$: $\Delta_{\mathbb{O}} = \Delta_{\mathbb{O}, \ classical} + \gamma_{\mathbb{O}}$

Access to the strong coupling constant*

*Chen et al. PhysRevD.102.054012
Recently measured by CMS (BOOST – 2023)

Experimental

Minimal detector effects

Isolation of pQCD & npQCD effects

Analysis Method/Overview

- Compute ENCs on charged anti- k_T jets, R = 0.4
- Bin-by-bin correction: ALICE has great angular resolution ($\approx 1 \text{mrad for } p_T^{track} \approx 1 \text{GeV}$)

$$f_{corr}(R_L^{det}, p_{\mathrm{T,jet}}^{det}) = ENC_{det}/ENC_{true}$$

 $ENC_{true}(p_{\mathrm{T,jet}}^{true}) = (1/f_{corr})ENC_{det}(p_{\mathrm{T,jet}}^{det})$

• Dominant systematic: p_T migration effects (unfolding checks – ongoing)

Systematics
p_{T} migration
Single particle tracking efficiency
Pair efficiency
Generator dependence

8

EEC at 5.02 TeV and 13 TeV at ALICE

Shift in peak with jet p_T

Higher p_T jets move to the left

Depicts jet evolution through different stages: angular ordering of QCD.

Small dependence on \sqrt{s} !

q/g fractions will modify the slope (see Andrew's talk).

ALI-PREL-55754

E3C at 13 TeV at ALICE

Same features as the EEC.

Slopes in the partonic regime different from EEC.

Anomalous dimension of E3C (γ_3) different from EEC (γ_2) .

A. Rai, Yale University

CFNS npQCD Workshop 2023

10

E3C/EEC at 13 TeV at ALICE

The change in slope with jet p_T indicates running of the coupling, α_S !

Slope ($\sim R_L^{\gamma_3-\gamma_2}$) verifies quantum mechanical corrections!

Perturbative regime:

 $\gamma_3 > \gamma_2$ (theory) reproduced in data (slope > 1).

Non-Perturbative regime:

Flat region indicates npQCD effects – Hadronization & trivial correlation between hadrons.

11

Both E3C & EEC are normalized by the area (in the measured range) and bin width

Model Comparison

EEC & E3C

Herwig shows better agreement

Differences more pronounced in the hadronic region -

Possible due to different hadronization mechanisms? Normalization choice?

ALI-PREL-557452

E3C/EEC

Pythia and Herwig both have ratio ≈ 1

Models capture perturbative dynamics well.

Isolates perturbative physics!

12

ALI-PREL-557437

Comparison of E3C/EEC with pQCD

Change in slope with jet p_T Trends between theory and data agree.

Work is ongoing to make this comparison robust.

13

Outlook

- ENCs allow us to probe both soft and hard physics!
- Full 3-point correlator (EEEC): study full shape dependence of energy flow in pp collisions.

Komiske et al., PhysRevLett.130.051901

Move to more complex systems:

A scale sensitive probe is great for studying more complex systems with inherent scales

EIC physics – modification due to cold nuclear matter

Deveraux et al., arXiv:2303.08143

QGP physics – isolate effects of the medium, access to soft physics color coherence effects Andres et al., arXiv:2209.11236 transverse momentum broadening Yang et al., arxiv:2310.01500

Energy Correlators

Other substructure observables

A. Rai, Yale University CFNS npQCD Workshop 2023

BACKUP

Model Comparison EEC

Herwig shows better agreement
Differences more pronounced in the hadronic region
Possible due to different hadronization mechanisms?

Model Comparison E3C

Trends remain similar to EEC. Herwig still agrees better

ALI-PREL-557472

ALI-PREL-557477

At LL collinear in pQCD

$$\frac{E3C}{EEC} \approx \frac{\gamma_3}{\gamma_2} \exp\left(\frac{\gamma_2 - \gamma_3}{\beta_0} \ln \frac{\alpha_S(R_L \mu)}{\alpha_S(\mu)}\right)$$

A. Rai, Yale University

CFNS npQCD Workshop 2023

18

Projected energy-correlators

$$ENC(R_L) = -\frac{d}{dR_L} \left[(1,1) \exp\left(\frac{-\gamma^{(0)}(N+1)}{\beta_0} \ln \frac{\alpha_S(R_L \mu)}{\alpha_S(\mu)}\right) (x_q, x_g) \right] H_J(\mu)$$

Generators don't capture the scaling behavior of EEEC

ENC/EEC ratios

- Get rid of non-perturbative and detector effects.
- Probe quantum mechanical corrections.

Komiske et al., PhysRevLett.130.051901

E3C/EEC ratios: quarks and gluons

A. Rai, Yale University CFNS npQCD Workshop 2023 21