Collinear matching relations for quark and gluon TMDs

Alessio Carmelo Alvaro University of Pavia

Supervisors: B. Pasquini, S. Rodini

CFNS Summer School, students' presentation session

Description of processes at low transverse momentum

Description of processes at low transverse momentum

No first principles derivation

Description of processes at low transverse momentum

No first principles derivation

Constraints on TMD functional form

Description of processes at low transverse momentum

No first principles derivation

Constraints on TMD functional form

$$f_j(x,b) \propto \sum_i C(x,b) \otimes f_{j/i}(x)$$

It correctly reproduces known results

It correctly reproduces known results

Model independent technique

It correctly reproduces known results

Model independent technique

Mass corrections to the TMDs $\sim x^2 M^2 b^2$

It correctly reproduces known results

Model independent technique

Mass corrections to the TMDs $\sim x^2 M^2 b^2$

Independent from spin, twist and quark/gluon

Two examples for NLP quark TMDs

$$f_{\oplus,T} = T(x_{1,2,3}) + \sum_{n=1}^{\infty} \frac{1}{(n-1)!(n+1)!} \left(\frac{x_3^2 M^2 b^2}{4}\right)^n \mathcal{C}\left[\left(\bar{u} + u(k+u)\right) \left(\frac{\bar{u}}{u}\right)^{n-1} T(y_{1,2,3})\right]$$

$$f_{\oplus,L}^{\perp} = x_3 \int [dy] \int_0^1 du u^2 \delta(x_1 - uy_1) \delta(x_2 - uy_2) T(y_{1,2,3})$$

The actual project: gluon TMDs

Distribution	Tw2	Tw3	Accuracy
f_1^g	f_g	-	N^3LO
$h_1^{\perp g}$	f_g	_	N^2LO
g_{1L}^g	Δf_g		NLO
g_{1T}^g			
$f_{1T}^{\perp g}$	-		
$h_{1T}^{\overline{g}}$	_		
$h_{1L}^{\perp g}$			
$h_{1T}^{\perp g}$			

References

Description of the technique and application to quark twist-2 TMDs: V. Moos, A. Vladimirov, *Calculation of transverse momentum dependent distributions beyond the leading power*, 2008.01744 [hep-ph]

Extension to quark twist-3 TMDs:

S. Rodini, A. C. Alvaro and B. Pasquini, *Collinear matching for next-to-leading power transverse-momentum distributions*, 2306.15052 [hep-ph]