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The Zero-Degree Calorimeter (ZDC)

* SiPM-on-tile design, similar to insert
* Fe/Sc sampling calorimeter
* 64 layers of 2.0 cm/0.3 cm Fe/Sc (~8 A)
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Non-compensation in hadronic calorimeters
* Hadronic showers have EM and hadronic components

* EM component usually has larger response in calorimeter
* Leads to deterioration of energy resolution
 Resolution - How well signals can be separated from each
other
* One possible solution: Using specific absorbers and scintillators
* Imposes strict requirements on material
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Methods to address non-compensation

¢ Assigning weights to EM and hadronic energies in cells, event-by-event

.03
* Example (CERN, 1980): Ecell,weighted = Ecen(1 — m * Ecelr)
* Example (CALICE, 2012): E « },; Eycari @i, w; is energy density dependent weight

* Al/ML-based reconstruction
* Seen in ATLAS

* These methods are employed & optimized after detector construction and data-taking
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Simulation and Procedure

* Goal: To measure angle and energy of neutrons at small angles, N>6
» Standalone DD4hep simulation of ZDC

* Investigate energy and angular resolutions in single neutron events
* 10<E<300GeV,0<H6<0.5

* Employ graph neural networks (GNNs) for regression on E, 6
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Model Schematic
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* Model outputs energy and 0 of incident particle

e Graph structure:

* Nodes - Cell (E, x, vy, 2)

* Edges - (E, x, y, z) of ten neighboring cells
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Energy Resolution

* GNN improves energy resolution
compared to strawman
e Strawman is simple sum of cell
energies
e Qutperforms CALICE software
compensation results
e JINST 7 (2012) P0O9017
* CALICE SC: ~45%/E
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https://iopscience.iop.org/article/10.1088/1748-0221/7/09/P09017

Angular Resolution

* Defined as the sigma of a Gaussian fit
of Ar=r _ -r_ .

e See improvements with staggered
design

* HEXPLIT & GNNs improve it even
further

e HEXPLIT is a reweighting
procedure detailed in NIM A 1060

(2024) 169044
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https://www.sciencedirect.com/science/article/pii/S0168900223010446?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900223010446?via%3Dihub

Takeaways

e Can use machine learning to improve the performance of the ZDC
* Gives insight into how well we can measure certain physics processes
 Example: A\° —>n+1T°—>n+y+y requires accurate neutron angle reconstruction

* By doing this during the design phase, we can optimize the detector design to best
measure the relevant physics processes

Thanks!



