Performance of a Zero-Degree Calorimeter for the EIC using Graph Neural Networks

Ryan Milton

University of California, Riverside

CFNS Summer School 2024

June 14, 2024

The Zero-Degree Calorimeter (ZDC)

- SiPM-on-tile design, similar to insert
- Fe/Sc sampling calorimeter
 - 64 layers of 2.0 cm/0.3 cm Fe/Sc (~8 λ)

Insert

Non-compensation in hadronic calorimeters

- Hadronic showers have EM and hadronic components
- EM component usually has larger response in calorimeter
 - Leads to deterioration of energy resolution
 - Resolution How well signals can be separated from each other
- One possible solution: Using specific absorbers and scintillators

Imposes strict requirements on material

Methods to address non-compensation

- Assigning weights to EM and hadronic energies in cells, event-by-event
 - Example (CERN, 1980): $E_{cell,weighted} = E_{cell}(1 \frac{.03}{\sqrt{E_{total}}} \cdot E_{cell})$
 - Example (CALICE, 2012): $E \propto \sum_{i} E_{HCAL,i} \omega_{i}$, ω_{i} is energy density dependent weight
- AI/ML-based reconstruction
 - Seen in ATLAS
- These methods are employed & optimized after detector construction and data-taking

Simulation and Procedure

- Goal: To measure angle and energy of neutrons at small angles, η >6
- Standalone DD4hep simulation of ZDC
- Investigate energy and angular resolutions in single neutron events
 - 10 < E < 300 GeV, 0 < θ < 0.5
- Employ graph neural networks (GNNs) for regression on E, θ

Model Schematic

- Model outputs energy and θ of incident particle
- Graph structure:
 - Nodes Cell (E, x, y, z)
 - Edges (E, x, y, z) of ten neighboring cells

Edges

3

Noges

Energy Resolution

- GNN improves energy resolution compared to strawman
 - Strawman is simple sum of cell energies
- Outperforms CALICE software compensation results
 - JINST 7 (2012) P09017
 - CALICE SC: ~45%/√E

Angular Resolution

- Defined as the sigma of a Gaussian fit of $\Delta r = r_{reco} - r_{truth}$
- See improvements with staggered design
- HEXPLIT & GNNs improve it even further
 - HEXPLIT is a reweighting procedure detailed in <u>NIM A 1060</u> (2024) 169044

- Can use machine learning to improve the performance of the ZDC
- Gives insight into how well we can measure certain physics processes
 - Example: $\Lambda^0 \rightarrow n + \pi^0 \rightarrow n + \gamma + \gamma$ requires accurate neutron angle reconstruction
- By doing this during the design phase, we can optimize the detector design to best measure the relevant physics processes

Thanks!