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M.Battaglieri (INFN)

AI-supported methods for 
Real-time data analysis

Part I - HEP/NP data and DAQ
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AI is widely used to (try to!) solve (too!) complex problems
• no analytic solutions
• too many data

Why AI for real-time data analysis (and why me)?

Only recently AI peeped out in physics (and it is spreading fast!)
• the black box approach is opposite to the scientific method (as articulated so far)
• AI is perpendicular to reductionism (we daily use in physics)

• take a problem
• identify the main features (making smart approximations)
• extract from experimental data the (simple) underlying law
• make the complexity simple ….

• Physics is a mature science: hundreds of years are difficult to reach (and beat!)

★ AI is a large and rapidly evolving field
• data scientists, mathematicians computer nerds,…
• what about physicists (theory, experimental)?

I’m an experimental physicist with a long experience in detector’s design 
and deployment and streaming readout data acquisition systems.
Despite I spent a large time of my life developing software tools for HEP 
and NP data analysis I’m:
• not particularly expert in computing, languages, coding, …
• not an expert in AI/ML
• pretty skeptical about AI as a magic wand for everything

… so, why me??? What is the advantage for you???
• unbiased (physicist-like) view of AI/ML uses
• a simple and basic picture of what AI/ML is
• a focus on physics (problems): AI/ML is simply a (powerful) tool
• I see (several!) advantages of using AI vs traditional approaches (and v.v.)
• far away from technical details (and complications)
• easy to fill your shoes (assuming you are a beginner in AI/ML!)

★ Streaming readout, the new paradigm in DAQ, calls  for 
sophisticated real-time analysis (including AI/ML)



M.Battaglieri - INFNAI-supported methods for Real-time data analysis3

AI for Real time data analysis: CFNS lectures

What can be done in 3 hours?     
… not much

• (only) one application (from A to Z)
• auto encoder for RT data reduction

https://colab.research.google.com/drive/1fSif01Wc6wXP_TyQdI3trReSf_4ltYph?usp=sharing#scrollTo=eLKiOiAvRUWA

• AI/ML basics
• AI algorithms
• Linear regression
• Gradient Descent
• Neural Networks
• Autoencoder

• Data Acquisition 
• Particle detector’s signals
• Trigger and Streaming readout
• AI in real-time data analysis

ePIC DAQ



M.Battaglieri - INFNAI-supported methods for Real-time data analysis4

Resources

Credits:
• Jin Huang, Jeff Landgraf, Markus Diefenthaler for ePIC SRO
• Fabio Rossi: (INFN-GE): author of JupyterNotebook exercise
• Cristiano Fanelli (W&M): material and pictures
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Part I
HEP/NP data and DAQ 
• Analog vs. digital
• Charge and time (features extraction)
• DAQ and streaming readout: triggered vs untriggered
• SRO requirements and opportunities
• An example: (future) ePIC@EIC (BNL) SRO scheme
• AI in real-time data analysis (clustering, tracking, calibration)
• Fast inference
• Data reduction

Outline
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From detector’s signals to physics

DAQ chain

★ Interaction TIME
★ Interaction POSITION
★ Deposited ENERGY

Elementary particle 
detector

• Position: x, y, z
• Momentum: px, py, pz
• Energy: E2 = (M2 + px2 + py2 + pz2 )
• Electric charge

• Position
• Time
• Energy

Particle trough the 
detector

Particle Detector
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Signals in HEP and NP physics: analog vs. digital

★ The Front End Electronics (FEE) produces 
analog signals. The information is coded into the 
signal shape

• PROS
• coded info: height, length, shape …

• CONS
• distortions imply a loss 

★ Coding the info in a conventional ‘pulse’ provides a 
simpler and effective manipulation of signals 

• PROS
• distortion is not an issue

• CONS
• coding requires a more complex elaboration 

and (often) a loss of information

★ Analog signals could be fast (rise time 10ps - 1ns) requiring a fast processing electronics 
(bandwidth > 1GHz)

★ CRATE (with a bus) + BOARDS for systems with <10k channels (NIM and VME 
standards are still in use)

★ Dedicated ASICS for large-scale experiments 

★ Nowadays data acquisition is heading to streaming readout mode (the border between 
online and offline is less and less defined)

★ Modern Analog-to-Digital Converters (ADCs) convert analog signals to digitals at the FE

 NIM

• Preamplifiers, Shaping amplifier, Pulse-stracher, Fan-in fan-out, Dealy line, Discriminator, ADC, 
Logic unit, Scaler Gate and Delay generator, Time-to-Amplitude converter, Attenuator, Splitter, 
Converter, Filter, …

 VME
• Bus-based architecture 

•Three different devices: controller, 
master (write), slave (stream out)

• Addressing hardwired on each board

• Inverted logic (active-low)

• Max speed: ~200 MB/s

Analog

Digital

★ The ‘pulse’ is the precursor of digital coding (Analog-to-digital)

★ Many different formats of ‘standard pulse’ with well-defined characteristics (within 
a certain range)

★ Each element in the data manipulation chain ‘knows’ about the input signal, and 
produces a well-defined (similar) output
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★ Interaction TIME
★ Interaction POSITION
★ Deposited ENERGY

Elementary 
particle detector

• Position: x, y, z
• Momentum: px, py, pz
• Energy: E2 = (M2 + px2 + py2 + pz2 )
• Electric charge

• Position
• Time
• Energy

Particle trough the 
detector

Particle Detector

V(t)

Typical signal

★ Full waveform contains information about the shape of the signal

★ Modern digitizers sample the waveform at a high rate and high definition (bits)

START 
Threshold 

END 
Threshold 

TRAILING samples 
PEDESTALS

LEADING samples 

★ CHARGE is measured by summing up samples (within a certain time window) or 
applying a more sophisticated algorithms (e.g. fitting the wf and integrating the curve or 
interpolating samples) Q = Sum[i=1,Nsample] (Ampli x 4ns) / 50 Ohm

Particle detector’s signals
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Particle detector’s signals

★ Interaction TIME
★ Interaction POSITION
★ Deposited ENERGY

Elementary 
particle detector

• Position: x, y, z
• Momentum: px, py, pz
• Energy: E2 = (M2 + px2 + py2 + pz2 )
• Electric charge

• Position
• Time
• Energy

Particle trough the 
detector

Particle Detector

★ Deposited ENERGY ⇔ CHARGE
V(t)

t (ns)
Typical signal

Edep ~ Q = ∫ V(t)dt / R (50Ω)
Area of the signal 
Q = V(t)T/R (Q)  

is proportional to  Edep

Time (s)

V
(t)

 (V
)
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★ Interaction TIME
★ Interaction POSITION
★ Deposited ENERGY

Elementary 
particle detector

• Position: x, y, z
• Momentum: px, py, pz
• Energy: E2 = (M2 + px2 + py2 + pz2 )
• Electric charge

• Position
• Time
• Energy

Particle trough the 
detector

Particle Detector

V(t)

★ Interaction TIME ⇔ Threshold

Time: Constant 
Fraction

CF Threshold: 50% of the signal height

Fixed Threshold

Time: Fixed 
Threshold

T1
T2

▪ T1≠T2 even idk the two 
signals start at the same time 

▪ T ~ 1/Q

TimeD

Fixed 
threshold

T1
T2

▪ T1=T2

TimeCF

threshold S1 
(50% max)

threshold S2 
(50% max)

Q

Time
Time Walk

▪ PRIMA correction 
▪ After correction

BEFORE

AFTER

Particle detector’s signals
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Triggered DAQ

Trigger logic
★ decides if/when to collect detector information
★ Select ‘events’ over ‘background’
★ Save data on disk for further processing
★ Different levels

• L1: threshold on FEE

• L2: combine information from different sub-detector 
components

• L3: requires info processing  

‘True'
Real 

(true+noise)

L1: threshold 
hits

L2: D1+D2 
clusters

D1

D2

D1

D2

D1

D2

D1

D2

D1

D2

L3: clusters 
track
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Streaming readout

Triggered DAQ

Streaming readout 
DAQ

Time frame 
builder
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Streaming RO

✴Shifting data tagging/filtering from the front-end 
(hw) to the back-end (sw) 
• Optimize real-time rare/exclusive channel selection
• Use of high-level programming languages
• Use of existing/ad-hoc CPU/GPU farms
• Use of available AI/ML tools
• (future) use of quantum-computing

Many NP and HEP experiments adopt a 
SRO DAQ

• CERN: LHCb, ALICE, AMBER
• FAIR: CBM
• DESY: TPEX

Why SRO is so important?
✴High luminosity experiments 

• Write out the full DAQ bandwidth
• Reduce stored data size in a smart way 

(reducing time for off-line processing)

✴Scaling 
• Easier to add new detectors in the DAQ pipeline
• Easier to scale
• Easier to upgrade

• FRIBS: GRETA
• BNL: sPHENIX.ePIC
• JLAB: SOLID, BDX, CLAS12, …
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Streaming RO

•FEE optimised for SRO
•ASICS (cheap) or fADC (multiplexing) at (O($10/ch) 
•TDC if necessary to replace fADC
•Zero-suppression mode
• Fast readout (optical link)

•Signal pre-processing  with fast hw (dedicated FPGA)
•de-multiplexing fADC info
•Charge, time, amplitude
•Data compression
•Data monitoring
•Add other information (e.g. ch_ID e TimeStamp)

•Full reconstruction CPU analysis 
(for each time frame)

•CPU/GPU/TPU sub-detector analysis (single stream)
•Local clusters, track segments, PID, …
• Time-frame building
• If necessary only store high-level data dumping raw

•  TF-Router Time frame construction
•Use time stamps to reorganise data from all streams in 

time frames

Time frame 
builder

Counting room/experiment Data center

Time frame 
builder

Time frame 
builder

Time frame 
builder

Time frame 
builder

AI/ML 
shall play 

a 
significant 

role in 
each of 
these 
steps
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ePIC Streaming Computing

Streaming RO for ePICS

• Full consensus for SRO within the 
EIC community (Yellow Paper, 
DAQ models in ECCE, ATHENA, 
…)

• R a t e s a t e P I C S a r e n o t 
comparable to LHC HI-LUMI but 
advantages of SRO remain:

• multiple channels to trigger on

• Holy Grail: to manage (storage) 
an unbiased (un-triggered) data 
set for further analysis

• on/off-line event selection with 
full detector information
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Interfaces

Within the ‘control room’
• Each stage in data flow 

requires IO specs (based on 
CPU, GPU, FPGA reduction)

• ‘control room’ boundary based 
on permanent data storage

Presented by Jin at UIC Meeting on Sept 21 2023

Outside the control room
• Networking
• CPU/GPU farm
• Local/remote resources
• on/off-line analysis

After: make sense of dataBefore Permanent storage: data readout with minimal loss of collision signal

• Each step in the workflow has 
a different latency

• Identify interfaces for a 
‘service-oriented’ approach

ePIC Streaming Computing
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AI-supported algorithms for SRO

Partial Real-Time data reconstruction: clustering 
• Look at all detector information (hit: x, y, t, E) to learn 

correlations: clusters of objects share common features
• Define a metric in a space and identify cluster features

• Tests on minimum bias trigger data before real-time
• Hyperparameters optimization based on data

Real Time data analysis
• In the SRO scheme, data analysis is performed online [this does not prevent to save unbiased frames for further analysis!]
• A św trigger is released based on real-time data analysis
• SRO and real-time data processing shall use AI:

• to adapt data analysis to the changed conditions of the run (e.g. thresholds)
• to identify data features in real-time (e.g.clusters)
• to extract calibration constants from a data sub-set
• to define algorithms to run (fast!) in real time on heterogeneous systems (e.g. CPU+GPU+FPGA)

Calibration 
• Use smart algorithms to extract data features and correct 

detector parameters varying over time
• toward a self-calibrating detector

Fast inference
• Fast algorithms to extract data features to be used in data 

selections (and reduction)
• Mimicking a smart ‘trigger’
• provide partial reconstructed quantity quickly

Data reduction 
• reduce data volume to a manageable level with minimum bias 
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AI-supported algorithms for SRO

Partial Real-Time data reconstruction: clustering 
• Look at all detector information (hit: x, y, t, E) to learn 

correlations: clusters of objects share common features
• Define a metric in a space and identify cluster features

• Tests on minimum bias trigger data before real-time
• Hyperparameters optimization based on data

Real Time data analysis
• In the SRO scheme, data analysis is performed online [this does not prevent to save unbiased frames for further analysis!]
• A św trigger is released based on real-time data analysis
• SRO and real-time data processing shall use AI:

• to adapt data analysis to the changed conditions of the run (e.g. thresholds)
• to identify data features in real-time (e.g.clusters)
• to extract calibration constants from a data sub-set
• to define algorithms to run (fast!) in real time on heterogeneous systems (e.g. CPU+GPU+FPGA)

Calibration 
• Use smart algorithms to extract data features and correct 

detector parameters varying over time
• toward a self-calibrating detector

Fast inference
• Fast algorithms to extract data features to be used in data 

selections (and reduction)
• Mimicking a smart ‘trigger’
• provide partial reconstructed quantity quickly

Data reduction 
• reduce data volume to a manageable level with minimum bias AI/ML Autoencoder
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Clustering

•Two pi0 peaks corresponding to two 
vertices (and a wrong assumption on the 
vertex position)

•Off-line reconstruction

Goal: real-time π0 identification

• π0 →γ1 + γ2 
• E1 and E2 = γ’s energies
• η = opening angle

Shall we used AI to analyse data real time, extract features (e.g. number of peaks and position)?
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Semi-unsupervised: K-means 

Yes, we can: semi unsupervised 
clustering using K-means
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Unsupervised: hdbscan

hdbscan vs. K-means
K-means: semi-supervised parametric ( K cluster seeds)
Requirements on clusters: 
• “round” or “spherical”
•  equally sized, dense
•  typically most dense in the center
•  not contaminated by noise and outliers

hdbscan:  unsupervised hierarchical clustering
Best performance when data are/have:
• arbitrarily shaped clusters
• clusters with different sizes and densities
• noise

•Off-line analysis to tune hyperparameters
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AI real time data analysis
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Fast AI applications: GEM-TRD

• e/pion separation based on ionization counting along track 
• Electrons higher ionization (absorption of  TR photons) 

1. detect hits 
2. hits in tracks 
3. ionisation 

measurement

• GEM-TRD copes with multiple tracks 
• Fast pattern recognition algorithm: Graph Neural 

Network (GNN) 
• Track fitting: recurrent neural network – LSTM 

• Implemented on FPGA using High Level Synthesis 
(hls4ml)

GNN on FPGAs 
• imported by hands 
• 1.4us inference time 
• Good (preliminary) results

RNN/LSTM on FPGAs 
• Only 19% of FPGA resources 
• 1us latency time 
• Good (preliminary) performance

MLP on FPGAs 
• Only 3% of FPGA resources 
• 65ns  latency time 
• Good (preliminary) results
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AI for a self-calibrating detector: GlueX Central Drift Chambers

Used to detect and track charged particles with momenta 
p > 0.25 GeV/c
• 1.5 m long x 1.2 m diameter cylinder

• 3522 anode wires at 2125 V inside 1.6 cm diameter straws

• 50:50 Ar/CO2gas mix 

Requires two calibrations: chamber gain and drift time-to-
distance 
• Gain Correction Factor (GCF): have most variation +/-15%
• Has one control: operating voltage

ML Technique: Gaussian Process (GP) 
Target: Provide traditional Gain Correction Factor (GCF)

• atmospheric pressure within the hall
• temperature within CDC
• CDC high voltage board current 

• GP calculates PDF over 
admissible functions that fit the 
data

• GP provides the standard 
deviationwe can exploit for 
uncertainty quantification(UQ)

•We used a basic GP kernel: Radial 
Basis Function + White

It works!

• Half the CDC (orange) at fixed HV, t he other half (blue) had its high voltages 
adjusted every 5 minutes
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Realtime data reduction

Data reduction represents a main challenge in SRO 
• Traditional DAQ: triggering (+ high level triggering/

reconstruction and compression) reduces data volume
• Streaming DAQ needs to reduce data real-time: zero-

suppression, feature building, lossy compression

Opportunities for real-time AI 
but also a challenge: 
• reliable data reduction

• Applicable at each stages of 
streaming DAQ (front-end 
electronics, readout back-end, 
online computing)

• Data quality monitoring, fast 
calibration/reconstruction

Front end electronics 
• Digitization (ADC, TDC, pixel readout)
• Data reduction strategy to immediately apply zero-suppression
• Real-time AI data reductions: 
• Improved zero-suppression (e.g.small signal recovery)
• Feature building
• Compression

• Target hardware: ASIC, (smaller) FPGAs Common requirement 
of low-power consumption, radiation tolerant

• Waveform digitizer: output data in ADC 
time series

• NN can be used in the FE to extract 
features (e.g. amplitude and time)

• Fit limited resources in FEE FPGA or ASIC
• quantized-aware training and pruning

Autoencoder 
• Charge (Energy) and time 

are compact to stream but 
partial

• fast and efficient way to 
preserve the full (anagogic) 
wave-form information

• Reduce the traffic on the 
first stages of the SRO DAQ 
pipeline


