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Why Al for real-time data analysis (and why me)?

I’'m an experimental physicist with a long experience in detector’s design
and deployment and streaming readout data acquisition systems.
Despite | spent a large time of my life developing software tools for HEP
and NP data analysis I'm:

* not particularly expert in computing, languages, coding, ...

* not an expert in Al/ML

* pretty skeptical about Al as a magic wand for everything

% Streaming readout, the new paradigm in DAQ, calls for
sophisticated real-time analysis (including AI/ML)

% Al is a large and rapidly evolving field
* data scientists, mathematicians computer nerds,...
* what about physicists (theory, experimental)?

. so, why me??? What is the advantage for you???

ARTIFICIAL
INTELLIGENCE

RL: Learning through
trial and error,

optimizing actions
based on rewards

Al: The field of computer /

science that focuses on
creating machines or
software capable of
intelligent behavior,

emulating human

cognitive functions such

as learning, reasoning,
problem-solving, and

perception.

DL: A subset of ML that

focuses on artificial
DEEP neural networks with

LEARNING many layers

ML: A subset of Al

A that enables
MACHINE computers to learn

LEARNING from data without

explicit programming

Al is widely used to (try to!) solve (too!) complex problems

* no analytic solutions
* too many data

)
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(
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* unbiased (physicist-like) view of AI/ML uses

* a simple and basic picture of what AI/ML is

* a focus on physics (problems): Al/ML is simply a (powerful) tool

* | see (several!) advantages of using Al vs traditional approaches (and v.v.)
* far away from technical details (and complications)

* easy to fill your shoes (assuming you are a beginner in Al/ML!)

Only recently Al peeped out in physics (and it is spreading fast!)
* the black box approach is opposite to the scientific method (as articulated so far)
* Al is perpendicular to reductionism (we daily use in physics)

* take a problem

* identify the main features (making smart approximations)

* extract from experimental data the (simple) underlying law

* make the complexity simple ....
* Physics is a mature science: hundreds of years are difficult to reach (and beat!)
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Al for Real time data analysis: CFNS lectures

ePIC DAQ * Data Acquisition

Exp Hall

Counting House

: ° ’ ° I
£B00 * Particle detector’s signals
EBDC Online . .
Monitoring T d S d
= * Irigger and Streaming readout
Data Filter
EBDC Buffer Box A I 1 I 1 d I 1
o * Al in real-time data analysis
EBDC etwor °
- Buffer Box
Switch at can e aone in Oours/

EBDC Buffer Box

— —— not much
| EEDC Buffer Box ¢eoo
\
\ Buffer Box
; Timing
I System Image

Structure . .
' Discover Classification
(=} 4 Fe.a.tur(? ® CUSton.]er g & Copy of Autoencoder.ipynb
e Elicitation Fraud ® Retention File Edit View | Runtime Tools Help All ch d
Meaningful A P J— ile it View Insert Runtime Tools Help changes save
> Detection :
compression = + Code + Text
DIMENSIONALLY ilc;‘p.'(‘—ls:a;ﬁm;*;' P Diagnostics Performance of the model at each step are shown and result are discussed for some signals. Performance of the algorithm w Voo B 272G @
Big data REDUCTION e B TN A Y Q original signal and reconstructed after the autoencoder. Particular attention is focused on the integral of the two signals because the phisycal
Visualisation \ ‘ {x) experiments are interested on the integral area of pulse to extract useful energy informations.
® Forecasting & heari
v Import all the necessary libraries
Recommended | UNSUPERVISED SUPERVISED Screenshot

Systems LEARNING LEARNING ® Predictions
Double-click (or enter) to edit
[ ]
[ AI/ML b Targetted . _
aSICS g X MALH'Nt (53 Proc.es.s ' 7 [39] }mport numpy as np # Use of array and math function
Marketmg Ophmlzaho import matplotlib.pyplot as plt # plot chart
Y M & LEARNING [y import tempfile # to save file and analize dimensions
a go rlt I I IS . import os
CUStomer NeW |nSlghtS import copy # to copy the entire model
Segmentaﬁon %mport random
import pandas as pd # to read file from github

* Linear regression

import tensorflow as tf

o REINFORCEMNET from tensorflow import keras
» Gradient D t i
ra’ Ien escen \ from keras.callbacks import ModelCheckpoint checkpoint to save best model during training
ReaI-Time DGCiSiOI’\S. X » RObOt Navigation from keras.callbacks import EarlyStopping stop training if no improvement
° Neu r.a'l Networl(s from keras import layers build layers of the model
Game A| o) @& Ski" Aquisition from sklearn.model_selection import train_test_split slit.dataseﬁ in tra.lir?, validation and test
Py from sklearn import metrics metrics durinf traininf mae, mse, ecc
* Autoencoder Learning Tasks #
import time # measure code execution time

Install the libraries not present in the default notes. And import it.

7 [2]

* (only) one application (from A to Z)
e auto encoder for RT data reduction ©

'pip install tensorflow-model-optimization # execute if the library is not installed

import tensorflow_model_optimization as tfmot # pruning and quantization of model

= S+ Collecting tensorflow-model-optimization
Downloading tensorflow_model_optimization-0.8.0-py2.py3-none-any.whl (242 kB)
] 242.5/242.5 kB 2.9 MB/s eta 0:00:00
| = Requirement already satisfied: absl-py~=1.2 in /usr/local/lib/python3.10/dist-packages (from tensorflow-model-optimization) (1.4.0)

N comnlated at 1-50 PAM

https://colab.research.google.com/drive/1£fSif01Wc6wXP TyQdI3trReSf 4ltY¥ph?usp=sharing#scrollTo=eLKiOiAvRUWA
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Resources

W.R. Leo

Techniques for
Nuclear and
Particle Physics
Experiments

A How-to Approach

Second Revised Edition

t i1 Springer-Verlag

-

Credits:

* Jin Huang, Jeff Landgraf, Markus Diefenthaler for ePIC SRO
* Fabio Rossi: (INFN-GE): author of JupyterNotebook exercise
* Cristiano Fanelli (W&M): material and pictures

ePIC Software & Computing Report d IXJ.V > physics > arXiv:1803.08823

Physics > Computational Physics

[Submitted on 23 Mar 2018 (v1), last revised 27 May 2019 (this version, v3)]

A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richardson, Charles K. Fisher, David J. Schwab

The GPIC Streaming Computing 1\/"[0(161 Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introductic
concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML anc
such as the bias-variance tradeoff, overfitting, regularization, generalization, and gradient descent before moving on to more advanced topics in both supervise
learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (inc
models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical phys

Marco Battaglieri’, Wouter Deconinck?, Markus
Diefenthaler?, Jin Huang*, Sy lvestel ]oosten Jeffery
Landgraf, David Lawrence? and Torre Wenaus®

for the ePIC Collaboration of the review is the use of Python Jupyter notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model an
. . . _ _ simulations of supersymmetric decays of proton-proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furt
Istituto Nazionale di Fisica Nucleare - Sezione di Genova, understanding of the physical world as well as open problems in ML where physicists may be able to contribute. (Notebooks are available at this https URL)

Genova, Liguria, Italy.
2University of Manitoba, Winnipeg, Manitoba, Canada.
3 Jefferson Lab, Newport News, VA, USA.
4Brookhaven National Laboratory, Upton, NY, USA.
> Argonne National Laboratory, Lemont, 1L, USA.

Abstract

This document provides a current view of the ePIC Streaming Comput-
ing Model. With datataking a decade in the future, the majority of the

DEEP LEARNING
; lan Goodfellow, Yoshua Bengio,
/' and Aaron Courville

content should be seen largely as a proposed plan. The primary drivers
for the document at this time are to establish a common understanding
within the ePIC Collaboration on the streaming computing model, to
provide input to the October 2023 ePIC Software & Computing review,
and to the December 2023 EIC Resource Review Board meeting. The

material should be regarded as a snapshot of an evolving document.

Neural Networks and Deep Learning
Machine Learning

A Probabillistic Perspective

Michael A. Nielsen

Determination Press, 2015 - Back propagation
(Artificial intelligence)

Kevin P. Murphy

"Neural Networks and Deep
Learning is a free online book.
The book will teach you about:
Neural networks, a beautiful
More »
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Outline

Part |

HEP/NP data and DAQ

* Analog vs. digital

* Charge and time (features extraction)

* DAQ and streaming readout: triggered vs untriggered

* SRO requirements and opportunities

* An example: (future) ePIC@QEIC (BNL) SRO scheme

* Al in real-time data analysis (clustering, tracking, calibration)
* Fast inference

* Data reduction

Al-supported methods for Real-time data analysis M.Battaglieri - INFN




From detector’s sighals to physics

A TIANS 1 0 DAQ chain
od WS — 55— BT — e—
EJ ‘%r/’li A N R T
BETEIET ‘_Frl' — = | Mass Storage | Detector
o j? "‘ = i oo
‘ ’ m,-f,wfr-?‘znrmm'ﬂ?d:'l | ' ' V Ampllfler
AN————— | | N Filter
) Shaper

Range compression

Sampling
11T Digital filter
LA Lero suppression

Run Number: 177531,
Event Number: 183704 o e
Date: 2001403<13, 18:20:50 CF| e

CeleTiies EMC Buffer
AN Feature extraction

Buffer
. Format & Readout

<_ to Data Acquisifion System
Particle Detector .
* Interaction TIME
Elementary particle * Position:x, y, z | * Position * Interaction POSITION
« Momentum: DX 7 Particle trough the ,
O detector + Time * Deposited ENERGY
detector * Energy: E2 = (M2+p,2 + p,2 + p2) . Energy eposite

Electric charge

)
L’_ﬁ FN o d@b] 2 Jefferson Lab streaming readout system - M.Battaglieri - INFN




Signals in HEP and NP physics: analog vs. digital

Analog

PULSE
HEIGHT

t, = BASELINE

RISE TIME FALL TIME

“"OVERSHOOT"

\
UNDERSHOOT

Digital

* The Front End Electronics (FEE) produces
analog signals. The information is coded into the
signal shape

* PROS

* coded info: height, length, shape ...
« CONS

* distortions imply a loss

* Coding the info in a conventional ‘pulse’ provides a
simpler and effective manipulation of signals

UNIPOLAR
* distortion is not an issue
BIPOLAR « CONS
/\ * coding requires a more complex elaboration
N and (often) a loss of information

* The ‘pulse’ is the precursor of digital coding (Analog-to-digital)

* Many different formats of ‘standard pulse’ with well-defined characteristics (within

a certain range)

* Each element in the data manipulation chain ‘knows’ about the input signal, and
produces a well-defined (similar) output

INF

)
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* Analog signals could be fast (rise time |10ps - Ins) requiring a fast processing electronics
(bandwidth > | GHz)

* CRATE (with a bus) + BOARDS for systems with <I0k channels (NIM and VME
standards are still in use)

* Dedicated ASICS for large-scale experiments

* Nowadays data acquisition is heading to streaming readout mode (the border between
online and offline is less and less defined)

* Modern Analog-to-Digital Converters (ADCs) convert analog signals to digitals at the FE

Cutput must Input must

deliver accept
Logic 1 ~14 mA to - 18 mA 12 mA to =36 mA
Logic 0 —1mA to +1 mA —4mA to +20mA
Current into 50 0
Neither risetime nor width is defined

* Preamplifiers, Shaping amplifier, Pulse-stracher, Fan-in fan-out, Dealy line, Discriminator, ADC,
Logic unit, Scaler Gate and Delay generator, Time-to-Amplitude converter, Attenuator, Splitter,
Converter, Filter, ...

VME

0x000-0x1ff

0x200-0x2ff

0x300-0x3ff

* Bus-based architecture

0x400-0x4ff

Three different devices: controller,
master (write), slave (stream out)

0x500-0x5ff

0x600-0x6ff

* Addressing hardwired on each board

* Inverted logic (active-low)
* Max speed: ~200 MB/s

M.Battaglieri - INFN




Particle detector’s signals

Particle Detect
Elementar e % Interaction TIME
ticle det yt | osttionix. 2 particle trough the + Position * Interaction POSITION
articie aetector * Momentum: px, py, pz . Time |
P * Energy: E2 = (M2+p,2 + p,2 + p;2) detector . Energy * Deposited ENERGY
* Electric charge

V(t) Evt: 2, N. seq trg: 1, SiPM: O
T_ i * Full waveform contains information about the shape of the signal
0 * Modern digitizers sample the waveform at a high rate and high definition (bits)
HEHE T A aeNn T R T TR
| TR T AR
T AV LTI CORRRRRRRRRRRE
L MITRRAnNARRNAn 1 :
404 oard LIttty : 1l
............ 874 T A YRRRRRR R
nanm | JEINRRRRANRRERARANEY | RN
,,,,,,,,,,,, U RIRERRRANRRRNEREIN )| L
£ ST e ———— T & T T R Reemaeaen 1
START @i O T e —— ) e OO e e
Threshold © 1 sHH AR RARRARR 1111111
END = OO0ZEAOOA =l sasnamnnnnamnnnnnmennenen 1111111
s NAOOAEAANan T ]
209 - N Threshold OOO0DEOOozZnO - ] Tl | T mannnnnnnnnnnnnnnnnnnnnnnnng N 10010
° NENNRENEENENW\ ||| || /ESSSSSSSSERSaE\ | [ N
EENNEENNEENEENY | | /eSSSSmssmmmmmmmw | [AHGGHTEO
..... .............. - o ol o B o s i | s P Y os g i f on o | ™ 11 BRI NAAR NN Enm
i PEDESTALS TRAILING samples """ 44kHz 44kHz 96kHz
‘ . % CHARGE is measured by summing up samples (within a certain time window) or
e 0 ———=—=—=—=—>" applying a more sophisticated algorithms (e.g. fitting the wf and integrating the curve or
o interpolating samples —
Typical signal P & ples) Q = Sum[i=|,Nsamp|e] (Amplix 4ns) /| 50 Ohm

)
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Particle detector’s signals

Particle
Elementar Detector * Interaction TIME
ticle det ); ) E/IOSitiont:X’y’Z Particle trough the * Position * Interaction POSITION
articie dadetector * Mlomentum: pX, py, pz e Ti :
P  Energy:E2 = (M2* p2 + p2 + p22) detector + Energy * Deposited ENERGY

Electric charge

* Deposited ENERGY < CHARGE

Evt: 2, N. seq trg: 1, SiPM: O
R —
> A
N
600 - e
>
400 - .
Area of the signal
Q=V(®TR (Q) Edep ~ Q = V(t)dt / R (50Q0)
is proportional to Egep
200 A
04  ® e ¢ 006000 00 400 >
o et e e e at=y e e o oo .
- P: (ns) Time (s)

Typical signal

)
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Particle detector’s signhals

Particle

Elementar Detector * Interaction TIME
ticle det ); ) E/IOSitiont: ik Particle trough the * Position % Interaction POSITION
articie daetector ¢ Momentum: pX, py, pz e Ti i
P  Energy:E2 = (M2* pu2 + py2 + p2 ) detector + Energy * Deposited ENERGY

Electric charge

* Interaction TIME < Threshold

V(t) Evt: 2, N. seq trg: 1, SiPM: O
T' St A = T,#£T2 even idk the two T A
] ! signals start at the same time iIme .
604 - H _ Tg~ 1/Q Time Walk
. = PRIMA correction
= After correction
Fixed
threshgld _
e >
404 o
CF Threshold: 50% of the signal height .
---------------------------- e——$}—€ TimeD
Fixed Threshold | ,
204 - : ! \ A
' B threshold S|
; “u, (50% max)
T. . F. d : . l ® el I ......
ime: Fixe + Time: Co.nstant biyiiis threshold 2
Threshold | Fraction (50% malk)
)
I ns
T
—F— TimeCF

=
INFN
L/.,
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Triggered DAQ

Trigger logic
Traditional (triggered) DA
( g8 ) Q * decides if/when to collect detector information
Traditional triggered * Select ‘events’ over ‘background’
, N * Save data on disk for further processing
: Digitize | * All channels continuously measured, * Different levels
Vs v \ \ Y, hits stored in short term memory  LI:threshold on FEE
\
* (few) trigger Channels | T%%i;gr /* ! * L2: combine information from different sub-detecta
participating send (partial) \ / N\ components
information to trigger logic 7 \ . Acquire | - L3: requires info processing
[ Global | | \_ Y,
| Trigger | True' Real
\. / l (truetnoise)
4 3\
| Build |
N
l C
* Trigger logic takes time to decide and if the / \ @
trigger condition is satisfied: | Store | Traditional triggered DAQ 7 7
* anew ‘event’ is defined L | Y > Pros
* trigger signal back to the FEE » we know it works reliably! Ll: threshold L2: DI+D2 L3: clusters
* data read from memory and stored on tape :
> Drawbacks: hits track

_ M * only few information forms the trigger
Files * Trigger logic (FPGA) difficult to implement and debug
l * not easy to change and adapt to different conditions
L . ‘ AL
s | | [
/ / /

Al-supported methods for Real-time data analysis M.Battaglieri - INFN




Streaming readout

e .- Time ‘ ‘ I ‘ | ‘ ‘
Am;?:lgtlce?tlon Integrated Charge - Trigger
Shaping A”F‘R'gtc’:de Logic

Detector \(\
Fron . Pipeline :
End Signal Buffer o Disk

Triggered DAQ y Processing Delay Tape

o — — = ——CPU/GPU/TPU —
Streaming readout FADC —{m| — Dot e i Time frame | =] CPU Cluster
T — U —  Signal — : Event —e
DC — — . ——1 Sub-Detector builder — :

=
INFN
L/,
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Streaming RO

Streaming read out (SRO)

Streaming
'/ - \. * All channels continuously measured and hits
v | Digitize | streamed to a HIT manager (minimal local
. . 4 N\ processing) with a time-stamp
* A HIT MANAGER receives hits | Self ' A

from FEE, order them and ship |  Trigger | l
/7

to the software defined trigger , \
. Acquire |
l J
. . 4 A
% .Soft\./vare Ic'.ieﬁnehd Itn%ger re-allﬁns : Store |
In tlme the w O e ECGCFOI’ Its ‘/ . \. \ | /
applying a selection algorithm to | - O ,_| l
Ll \ rigger '
the tr:me slice f | \ 99 y,
+ the concept of ‘event’ is lost , ‘
* time-stamp is provided by a >: Process | SRO DAQ
synchronous common clock L / > Pros
distributed to each FEE | * All channels can be part of the trigger
* Sophisticated tagging/filtering algorithms
/ N\ * high-level programming languages
| L — :' * scalability
\_ y > Drawbacks:

* we do not have the same experience as for
TRIGGERED DAQ

Al-supported methods for Real-time data analysis

Why SRO is so important?

* High luminosity experiments
* Write out the full DAQ bandwidth

* Reduce stored data size in a smart way
(reducing time for off-line processing)

* Shifting data tagging/filtering from the front-end
(hw) to the back-end (sw)

» Optimize real-time rare/exclusive channel selection
* Use of high-level programming languages

* Use of existing/ad-hoc CPU/GPU farms

* Use of available Al/ML tools

* (future) use of quantum-computing

* Scaling
* Easier to add new detectors in the DAQ pipeline
* Easier to scale
* Easier to upgrade

Many NP and HEP experiments adopt a

SRO DAQ
* CERN: LHCb, ALICE,AMBER
* FAIR: CBM ,
. DESY-TPEX FRIBS: GRETA

* BNL: sPHENIX.ePIC
* JLAB: SOLID, BDX, CLASI?2, ...

M.Battaglieri - INFN




Streaming RO

& End

FADC
TDC

Digital
Processing

o FEE optimised for SRO
¢ ASICS (cheap) or fADC (multiplexing) at (O($10/ch)
¢ TDC if necessary to replace fADC
e Zero-suppression mode
e Fast readout (optical link)

o Signal pre-processing with fast hw (dedicated FPGA)
e de-multiplexing fADC info

e Charge, time, amplitude

e Data compression

e Data monitoring

e Add other information (e.g.ch_ID eTimeStamp)

CPUIGPU/TPU
Reconstruction
Sub-Detector
Love! o CPU/GPU/TPU sub-detector analysis (single stream)
e Local clusters,track segments,PID, ...
e Time-frame building
— e If necessary only store high-level data dumping raw
—— Time frame
— — 9
—— builder
e TF-Router Time frame construction
e Use time stamps to reorganise data from all streams in
time frames
—e
— PUame| e Full reconstruction CPU analysis
—— Selection (for each time frame)
Counting room/experiment Data center

Al-supported methods for Real-time data analysis

Al/ML
shall play
a
significant
role in
each of
these
steps
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ePIC Streaming Computing

ePl& EIC Streaming Readout Architecture

|

I
VDS =~ 5m
Analog ~ 20m

[©

== Configuration & Control

Power Supply System
(HV, LV, Blas)

data reduction

*ATHENA estimates
assumed much move
Suppression at early

Streaming RO for ePICS

Power
Detector FEB FEP | DAQ
(Front End Board) | (Front End Processor) | (Data Acquisition) e Full consensus for SRO within the
| BW Oﬂooftlm«) > | BW 0\"0'%5)’\}' EIC community (Yellow Paper
|V T N DAQ models in ECCE, ATHENA,
: ' J Beam collision clock‘{nput . )

o ! :C*‘"O’:'J‘“‘“i;’ e« Rates at ePICS are not
' comparable to LHC HI-LUMI but
| < :5' advantages of SRO remain:

e | w tactor of 100 in  multiple channels to trigger on
= G

* Holy Grail: to manage (storage)
an unbiased (un-triggered) data
set for further analysis

 on/off-line event selection with
full detector information

L Cooling Systems stages, but st 100Gbps
L ’ output. (See J. Landgraf
. , talk at SRO X)
EIC Streaming Readout (From Fernando Barbosa's talk at AIEIC Sep. 9, 2021)
J on Lab Kickstarting the ePIC Computing Plan : 2023-07-18 : D. Lawrence : ePIC SRO WG Meeting ?

Al-supported methods for Real-time data analysis M.Battaglieri - INFN
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ePIC Streaming Computing

ePIC Software & Computing Meeting

20-22 Sp 2023 Interfaces
UIC Student Center East Tover Presented by Jin at UIC Meeting on Sept 21 2023

ePIC streaming computing: follow the data & zoom out * Each step in the workflow has

a different latency

: . * Identify interfaces for a
Throughout the data flow: monitoring, QA, feedback towards operation $ee also: next session on reco. 4

: 1 ] ‘service-oriented’ approach

f / Online reconstruction,
|/ 0(1000) / 0(1000) /  ©(100) 0(100) , 0(10)PB EL,MM
| - Online Computer  [[FT) o m
(Readout, "
compression) / Offline infrastructure o ‘ :
(Buffer, Calibration, Within the ‘control room
Processing, Analysis 10) )
: O(100k}cores * Each stage in data flow
7\ .
— Lo - 96 Gb/sec Ot180jP8 requires 1O specs (based on
——— Comnsipsl 3G - CPU, GPU, FPGA reduction)
Synchrotron Rad 01 Gb/sec Fau safe) . ’
,. Electron Beam 226b/sec : * ‘control room’ boundary based
Aggregate 20Thbec Hadeon Besmn Lo : on permanent data storage
Per RDO (Avg) 7 Gb/sec Noise 32 Gb/sec -
I Before Permanent storage: data readout with minimal loss of collision signal > E After: make sense of data >
IIILIaItIeIIan IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
. . >
Ons 0O(100)ns O(1)us O(10)us O(1)min O(1)min-O(1) day O(1)day-O(1)week Outside the control room
. egens ° I
Possible facilities: Networking
T >
On detector On detector/rack DAQ room Host labs/Echelon 1 facility =~ Remote resources * CPU/GPU farm

 Local/remote resources

Reference: °  ©PICDAQuwiki: httos://wiki.bnl.gov/EPIC/index.ohp title=DAQ * on/off-line analysis
*  ECCE computing plan, Nuclinstrum Meth A 1047 (2023) 167859

Jin, also for Marco, Markus, Jeff, Torre ePIC Software & Compuling Meeting at UIC 6

)
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Al-supported algorithms for SRO

Real Time data analysis
* In the SRO scheme, data analysis is performed online [this does not prevent to save unbiased frames for further analysis!]
* A sw trigger is released based on real-time data analysis

* SRO and real-time data processing shall use Al:
* to adapt data analysis to the changed conditions of the run (e.g. thresholds)
* to identify data features in real-time (e.g.clusters)
* to extract calibration constants from a data sub-set
* to define algorithms to run (fast!) in real time on heterogeneous systems (e.g. CPU+GPU+FPGA)

Fast inference

: , , . * Fast algorithms to extract data features to be used in data
Partial Real-Time data reconstruction: clustering selections (and reduction)

* Look at all detector information (hit: x, y, t, E) to learn » Mimicking a smart ‘trigger’
correlations: clusters of objects share common features

* Define a metric in a space and identify cluster features
* Tests on minimum bias trigger data before real-time
* Hyperparameters optimization based on data

* provide partial reconstructed quantity quickly

Calibration

* Use smart algorithms to extract data features and correct
detector parameters varying over time

* toward a self-calibrating detector
Data reduction

* reduce data volume to a manageable level with minimum bias

)
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Al-supported algorithms for SRO

Real Time data analysis
* In the SRO scheme, data analysis is performed online [this does not prevent to save unbiased frames for further analysis!]
* A sw trigger is released based on real-time data analysis

* SRO and real-time data processing shall use Al:
* to adapt data analysis to the changed conditions of the run (e.g. thresholds)
* to identify data features in real-time (e.g.clusters)
* to extract calibration constants from a data sub-set
* to define algorithms to run (fast!) in real time on heterogeneous systems (e.g. CPU+GPU+FPGA)

Data reduction
* reduce data volume to a manageable level with minimum bias Al/ML Autoencoder
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Clustering

Goal: real-time 10 identification

*TO Y2
* El and E2 = ¥’s energies
* 1 = opening angle

m,zro = 2FE,E5(1 — cosn)

e On-beam tests:

* reconstruct Mo

scattered

CLASI2
FT-Cal

Nuclear Physics

A Trial Run for Smart Streaming Readouts

FEBRUARY 17, 2023

. - The Science
o 10.4 GeV e- beam on thin Pb/Al target e” beam
> of subatomic particles such as protons, neutrons, and qgarks to revea‘[ details of the bits that
N . . . 0 make up matter. Instruments that measure the particles in these experiments generate torrents of
o Inclusive pi0 production L e o e e e P e o s
O e + p b/AI - XeqTO - (X) evv - Y ::sti]e;hsc tests also demonstrated that each system perfor_mcd well in comparison with traditional
o Two gammas detected in FT-CAL lead Jho Tty
target N\ .
[ ] [ ] “ 3
e Off-line reconstruction Invariant mass '\ X - not detected
500 —
B *Two pi0 peaks corresponding to two
w00l vertices (and a wrong assumption on the
- vertex position)
— .
— nvariant mass 7 ndf 60.98 / 60
300 — 350 — p0 208 +20.9
- — p1 -0.2832 + 0.2751
. N p2 166.4 £ 10.5
B 300 — p3 101.1+0.2
B — p4 3.7+£0.3
200 — os0l p5 ~3.125+1.196
B - p6 150.9 + 16.4
| : p7 116 £ 0.3
| 200 — p8 3.833 +0.351
100 — - p9 108.9 + 7.6
— 150 |-
B I I I I 100[— :
| | | | | | | | | | | | | | | —
0 50 1 00 1 50 200 250 300 __L | 1 1 1 I 1 | 1 | 1 I 1 | 1 \l\\\ 1 1
MaSS [MeV] 60 80 100 120 140 Mass [MeV]

Shall we used Al to analyse data real time, extract features (e.g. number of peaks and position)?
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Semi-unsupervised: K-means

Semi-supervised Clustering: e.g., K-means

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids
(not necessarily from your dataset)

2 STEP 3: Assign each data point to the closest centroid
(That forms K clusters)

STEP 4: Compute and place the new centroid of each cluster

Iteration number 1l

Yes,

we cCcan:

semi

clustering using K-means

unsupervised

Table 2. The different metrics used for k-means.

STEP 5: Reassign each data point to the new closest centroid
If any reassignment took place, go to STEP 4,

otherwise go to FIN.
L Your Model is Ready

metric

2 2
(Xhit . Xmean) T (Yhit o Ymean)
(Xhir_Xmeun)3 2 (leit_yrrzc'(zrr)2 % 8 (thir_tnwun)2
L2 ch'cll (50 ns)2

cell A
(Yhit X mecm)h

3
(Xhit‘xmecm)"
2

+ 3 p)
L Lcell (50 ns)

Z‘r:ll

description
squared 2D space distance

squared 3D space-time distance

+ Unit—tmean)” | (Enit — Emmn)2 squared 4D space-time-energy distance

Table 3. The main parameters of the k-means algorithm are described and their values reported. For each
parameter, the last column shows when it intervenes, either if in the pre-processing or in the clustering phase.

t threshold
E threshold
time_window
count_cells
iterations
bad_distance
bad_time
norm_space
norm_time

norm_ene

parameter

description
minimum time of hits
minimum energy of hits
time difference between hits
active neighbor cells for each hit
k-means updates
max distance hit-cluster
max time difference hit-cluster
normalization space distance hit-cluster
normalization time difference hit-cluster
normalization energy difference hit-cluster

value [units]
0. ns
0. GeV
50 ns
>1
10 (30)
not used
not used
L_cell (cell length, see Tab. 2)
50 ns (see Tab. 2)
not used

phase

preprocessing

preprocessing

preprocessing

preprocessing
clustering
clustering
clustering
clustering
clustering
clustering

bool = At <50ns && AX <1&&AY <1&& (AX+AY) > 0 3.1)

For K-means we need to make some assumptions, in particular we need to provide the seeds.

Al-supported methods for Real-time data analysis
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Unsupervised: hdbscan

Unsupervised: e.qg., Hierarchical Clustering

Two different clusterings based on two different level-sets

The area of the regions is the measure of “persistence”.

Core distance (defined by a required # of neighbors) as estimate of density

Points have to be in a high density region and close to each other (“mutual
reachabilityg

Maximize the persistence of the clusters under the constraint that they do

not overlap.

clusters are more likely regions separated by less likely regions -> densities

e Off-line analysis to tune hyperparameters

entries/2.0 [MeV/c?]

"~ 'star

Jard™ "

- benchmark

T | T

INFN
(

M,, [MeV/c?]

entries/2.0 [MeV/c?]

hdbscan vs. K-means

K-means: semi-supervised parametric ( K cluster seeds)
Requirements on clusters:

* “round” or “spherical”

e equally sized, dense

o typically most dense in the center

* not contaminated by noise and outliers

hdbscan: unsupervised hierarchical clustering

Best performance when data are/have:
e arbitrarily shaped clusters

e clusters with different sizes and densities
® noise

i

N
-
T T

s
T T T T T

M,, [MeV/c?]

Sklearn K-Means
¢ Sklearn DBSCAN

— Scipy K-Means
=00
c6 ¢ HDBSCAN
— Fastcluster
()
£
—
(<150
O
——
(@)
-
| S,
e
&
el 00
(&)
)
e
(@)
C
—
ICH 50 .
(7))
=
O

0

0 50000 100000 150000 200000

M,, [MeV/c?]

number of hits
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Al real time data analysis

SRO test @ JLAB results: Al vs standard clustering

C. Fanelli

Feb 2020 data_ I e Al clustering inspired by Hierarchical Density-Based

| Spatial Clustering of Applications with Noise (HDBSCAN)
It Is not cut-based
It Is able to cope with a large number of hits

|

:

IIII]ITIT]IIII]IIIII

—— cut-based clustering

111111

:

~—— unsupervised clustering ) e Compared yy-invariant mass spectrum obtained utilizing
both the standard and the HDBSCAN clustering
algorithm

Al significantly improves signal-to-background ratio

In the 0 region

A longer runtime of ~30% relative to the standard

clustering algorithm

:

combinatorial bkgd

llllllx

entries/2.0 [MeV/cz]

Al target Pb target

=

=

a
L
R TS

1 1 e Al clustering approach promising alternative to
100 200 traditional cut-based approaches

M(highest ene. clul, clu2) [MeV/c’]

A

F. Ameli et al,, Eur. Phys. J. Plus (2022) 137: 958

https://doi.org/10.1140/epjp/s13360-022-03146-2
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Fast Al applications: GEM-TRD

-.g 180
=
S
160
pion electron 140
. Entrance
Radiator window 120
T il
N 100
Primary 5’ 80
dE/dx | TR/ 3 .
hoton - 2
clusters/ P Xe gas ts'
: o
mixture 3 40
-50

region

/ / Readout

* e/pion separation based on ionization counting along track

* Electrons higher ionization (absorption of TR photons)
|. detect hits

2. hits in tracks GEM-TRD can work as micro TPC, providing 3D track segments

. ° ° E [ -
3. ionisation E asf £ as |
measurement N 5
- A W ok T
25? o© 25?
(&)
¥ c
. ©
E a2
20 © 20
} E "
| ©
15; 15 |-
10; N . W00 -cevccrmrmrrmscfrsrrssresennes
5 | I I | . 5"111111111111111111111
-15 -10 -5 0 0 5 10 15

projection x, mm projection y, mm

Al-supported methods for Real-time data analysis

GEM TRD tracks

— 4000

—3500

I _
* GEM-TRD copes with multiple tracks

—3000

250 e Fast pattern recognition algorithm: Graph Neural
2000 Network (GNN)
00 * Track fitting: recurrent neural network — LSTM
1000
s0o  *Implemented on FPGA using High Level Synthesis
. (hls4ml)
0 50 100 150 200
X strips
10 ] fake |1.01°
GNN on FPGAs 1 os)
* imported by hands o -
0.41
e | .4us inference time ot | |
° . . FL If | — purity
Good (preliminary) results o] | LT ,FT—IJ, DY Joof — etienss
0.0 0.2 M%:elou(zfm 0.8 1.0 0.0 0.2Cut (?r.]tlm()dgl.(;coreO.B 1.0
10° T———
RNN/LSTM on FPGAs | — etagger, AUC = 96.1%
. p tagger, AUC = 96.1%
* Only 19% of FPGA resources -==- etagger, AUC = 95.7%
p tagger, AUC = 95,7%
* lus latency time N
2 107 1
* Good (preliminary) performance : ]
MLP on FPGAs § 10~ ’_,-',',';,'
t |/
* Only 3% of FPGA resources | -
*65ns latency time ‘ o
e -

* Good (preliminary) results ———————
Signal Efficiency

0.0 0.2
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Al for a self-calibrating detector: GlueX Central Drift Chambers

.............
................

Axial Layers

-
e
e
wantle
''''''

........

+6° Stereo Layers

e
ey
ey
e

oooooooo
Ly .0.0.-'-.-.- .......

ML Technique: Gaussian Process (GP)

Target: Provide traditional Gain Correction Factor (GCF)
* atmospheric pressure within the hall

* temperature within CDC
* CDC high voltage board current

e GP calculates PDF over
admissible functions that fit the
data

y observed data
x y, Mean function estimate
X. new predictions

* GP provides the standard
deviationwe can exploit for
uncertainty quantification(UQ)

*We used a basic GP kernel; Radial
X Basis Function + White

e
et
-

Al-supported methods for Real-time data analysis

Used to detect and track charged particles with momenta
p > 0.25 GeV/c

*|.5 mlong x 1.2 m diameter cylinder

-6° Stereo Layers

* 3522 anode wires at 2125V inside |.6 cm diameter straws
*50:50 Ar/CO2gas mix

Requires two calibrations: chamber gain and drift time-to-
distance

— * Gain Correction Factor (GCF): have most variation +/-15%
* Has one control: operating voltage
It works!
52.5 o
Ll e Tuned HV:[2113-2140]V

50.0- o . HV=2130V

47.5
> ‘o'. %
o PLCL %
S 45.0 o '

‘.0¢ o .'.'...' %o “(“tg‘::i.:"l(..qmg‘C(‘....‘. esto,
42 .5 270 06% g 0at 0 ee eatetengcaqaegte R v‘e'““’. “a;‘.a‘uues‘.‘.«‘«‘-!eee,«a:«ee.e“.e.a=.=.‘!°=‘."==e
40 . O t,.“.“_“ ;.l.(t‘ 0«1:0«««((0,::“"' [ ‘:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Event Number 1e8

* Half the CDC (orange) at fixed HV, t he other half (blue) had its high voltages
adjusted every 5 minutes
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Realtime data reduction

Data reduction represents a main challenge in SRO Stages of streaming DAC

Opportunities for real-time Al

* Traditional DAQ: triggerin + high level triggerin Online
. Q 85T ING ( gh level triggering/ Back-end . but also a challenge:
reconstruction and compression) reduces data volume Computing
. . Exp. Hall Y ° I I
* Streaming DAQ needs to reduce data real-time: zero- Xp- Ha | Timing reliable data reduction
. . . SR . .
suppression, feature building, lossy compression — L T R Appllcal?le at each stages of
— | TFE = e streaming DAQ (front-end
. erver [« :
Front end electronics = ! — i .| Network electronics, readout back-end,
z erver . .
+ Digitization (ADC, TDC, pixel readout) T | = online computing)
. . . . x Server [¢*| St . . .
* Data reduction strategy to immediately apply zero-suppression : S * Data quality monitoring, fast
e Real-time Al data reductions: N e s | ~ 10/200Gps calibration/reconstruction
* Improved zero-suppression (e.g.small signal recovery) , DAQTroOm
* Feature building
» Compression Input ouput AuUtoencoder
* Target hardware: ASIC, (smaller) FPGAs Common requirement \\\\ /// « Charge (Energy) and time
of low-power consumption, radiation tolerant VPN~ Code Tk / are compact to stream but
o FTTT T T T T TS \ oy NPT \ partial
=R ; : \
S 8000 ' ! — \// \\ / N // \/
é’moi E A A )\ ,\/\ * fast and efficient way to
- | o / /NN / :
° Waveform digitizer: OUtPUt data in ADC GO0 S— / \ / -~ \ / \\ preserve the fU” (gnagoglc)
: : - ] A SQ] | wave-form information
time series 5000:_ ....................................... S . // p - \\
* NN can be used in the FE to extract <o : //// AR * Reduce the traffic on the
features (e.g. amplitude and time) ao00f- | \ | ) \ ) first stages of the SRO DAQ
* Fit limited resources in FEE FPGA or ASIC 2000 %ﬂm . Yi\ D‘Yl‘ pipeline
* quantized-aware training and pruning 1000k - — e

Sample number
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