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Goals for today and tomorrow
• Heavy ion physics: what is it, why do we study it, 

how is it relevant to EIC 

• How do we study the QGP?  What have we 
learned? 

• Jets basics: what are they and how do they 
develop in vacuum?  What do they look like? 

• Application of jets: Why do we love them & how do 
we use it in various contexts to learn the physics we 
are after?
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Part 1: Heavy-Ions



Goals for this part
• Heavy ion physics: what is it, why do we study it, 

how is it relevant to EIC 

• How do we study the QGP?  What have we 
learned? 

• Jets basics: what are they and how do they 
develop in vacuum?  What do they look like? 

• Application of jets: Why do we love them & how do 
we use it in various contexts to learn the physics we 
are after?
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The Strong Force and 
the Quark Gluon Plasma



Particles and forces of nature
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Gluons: strong force

Photons: electromagnetic

Z/W bosons: weak force

Higgs boson: rest mass

Strength: Strong >>>> electromagnetic > weak

Quarks & leptons: matter



Strong force and QCD
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Strong force theorized as 
quantum chromodynamics (QCD)

Responsible for > 98% of everyday mass

Asymptotic freedom & 
confinement: quarks/
gluons are confined in 

nuclei/hadrons
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Highly successful



Pushing boundary: extreme conditions
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What happens here?

Neutron star

Many interesting 
places to study the 

strong force

For example… 
what happens when 
we compress and 
heat things up?



Quarks and gluons no longer confined
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Can we recreate this in lab?

Quarks and gluons can 
move outside of the 
boundary of nucleus

“Quark gluon plasma”

State of matter ~  
after the big bang

10−6s



Heavy-ion collisions
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e.g. Pb/Au/Xe/… ion

Accelerate heavy ions to 
extreme speed and collide!

> 99.99999% speed of light 
(Lorentz  up to ~2700)γ

LHC, CERN, Geneva RHIC, BNL, New York



Heavy-ion collisions
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Head-on collision.  Huge amount of particles created



What happens after collision?
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QGP Particles

Dumps energy 
into the field

Expansion of 
the plasma

Decay and 
cool down

, or  fm/c∼ 10−23s − 10−22s O(10)



Lifetime in context
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QGP

Plot stolen from Andrii



Plasma ID card
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Lifetime: O(10) fm/c
Temperature: 160-500 MeV / k

Initial size: ~10 fm disc
Feature: liquidy and hot-tempered

Nationality: collider

Name: quark-gluon plasma 
            from ion-ion collision

10 fm/c ∼ 3 × 10−23s

~2-5T Kelvin
Converts to particles 
at around 160 MeV/k



Back to QCD phase diagram
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How do the two transition into each other?



Mapping out the phase diagram
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Now we see where we probe with heavy ion collisions



Mapping out the phase diagram
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RHIC/LHC top energy mostly traces along the y axis



Search for critical point
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RHIC BES (Beam Energy Scan) program 
maps out different lines on the diagram



Link to early universe

19

QGP: ~1 sμ Light wall: can’t see 
past here with light



Link to early universe
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Phase transition  bubbles  potential CMB signature→ →



Link to early universe
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Early universe: very tiny net Baryon density



How do we learn about 
the property of the QGP?



Generally two broad categories
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Let’s look at the 
decays first

Classic evidences for the liquid phase



Analyzing the decay
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Thermodynamics => hot quantum liquid

Particles get pushed 
by liquid

PLB 736 (2014) 196-207, 2014
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Thermodynamics => hot quantum liquid

Particles get pushed 
by liquid

π±

PLB 736 (2014) 196-207, 2014
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Thermodynamics => hot quantum liquid

Particles get pushed 
by liquid

Heavier particle acquire 
more momentum

v v
π±

p

v
vvπ±

proton

PLB 736 (2014) 196-207, 2014



Density gradient & pressure
• Pressure in the plasma 

• Pressure gradient ~ force 

• Initial geometry leads to 
azimuthal asymmetry 
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JHEP 05 (2021) 284



Collective behavior: example
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Amount of collectivity per quark lines up nicely 
across different mesons and baryons

Quarks are the things that are “flowing”



Viscosity
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Shear viscosity: resistance across layers of liquid

Can be inferred from (e.g.) amount of collective behavior 
More viscous  asymmetry smeared out→

Credit: wikipedia



Extracted viscosity
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Bulk viscosity Shear viscosity

Example from a Bayesian global analysis (JETSCAPE)

Quite small!

Almost like a 
perfect liquid

Phys. Rev. C 103, 054904



Strangeness enhancement
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Another classical signature 
is the amount of strange 

particles produced

QGP temperature is 
high enough that we 
can create  pairsss̄

If there is QGP we expect 
more strange particles 



So…
• We see signs of liquid-like behavior, we have radial 

push, we have collective particle production 

• It flows very well given the entropy with a very low 
specific viscosity 

• We see more strange quarks created, consistent 
with the picture of a hot liquid with temperature 
same order as two strange quarks 

• Let’s look at the other class of observables next
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Going a step further: 
how do we study the 
structure of….things?



Rutherford experiment (1911)
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High energy 
-particleα

Shoot high energy particles to probe the structure

Gold 
foil

Distribution of outgoing particles tell us something 
about the structure of the target (the atom in this case)



X-ray on crystals
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Credit: Jeff Dahl, wikipedia

X-ray

Crystal 
sample

Periodic nature of crystal  nontrivial interaction→

Diffraction pattern tells us something about the structure

https://en.m.wikipedia.org/wiki/X-ray_scattering_techniques


Doing “scattering”
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Very rarely there will be high energy particles created 
in the initial collision before the plasma forms

All-in-one scattering experiment prepared by nature 😎



Example: photons, 
leptons
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(High energy) photons
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γ

“Nuclear modification factor”: 
 

RAA =
σ with QGP (PbPb)

σ without QGP (reference)
∼ 1

~transparent

What about 
electrons/muons?

JHEP 07 (2020) 116, 2020



’s (high energy leptons)Z
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e/μ
e/μ

Z

~transparent

 boson decay timeZ ∼ 3 × 10−25s
Decays before QGP is formed

What we see is the decay product
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Phys. Rev. Lett. 127, 102002 (2021)



Example: heavy 
quarks



Heavy quarks (c, b)
• Predominantly produced in the beginning (QGP not hot enough) 

• Weak decay: decay time >> QGP lifetime 

• Samples through the full QGP evolution 

• Good probes for… 

• Hadronization studies 

• Quark-medium interaction & energy loss 

• Thermalization and collectivity 

• …
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Wikipedia



Quarkonia (heavy )qq̄
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Exotic states
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XRelated ideas but with a 
state with unknown origin.  

For example X(3872)

We use QGP to probe the X(3872)!10 20 30 40 50 60 70
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Example: light quarks 
and gluons



They become jets
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Stay tuned for the second half 
where we will talk a lot more about 

what we can learn from jets :)



“Scattering” recap
• QGP lifetime is small  no time for electroweak 

interactions to cause significant effect for high 
energy photons and electrons/muons 

• Heavy quarks are created at the beginning of the 
collision and samples through the whole QGP 
evolution 

• What we covered are just examples: a lot more we 
can learn from “scattering experiment” with different 
particles (not discussed due to time)

→
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What happens when the 
ions miss each other



Ultraperipheral collisions (UPC)

• Impact parameter larger than the radius of the two 
nuclei  ultra-peripheral collision 

• No inelastic hadronic interaction but EM interaction 
possible 
 
 
 
 
 

→
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Electromagnetic field as photons
• Lorentz boost à virtual photons around the nucleus 

• Photon flux huge cross section boost for EM 
interaction 

• Precision test of QED 

• Photon energy  

• : distance to nucleus center 

• When it’s just outside the 
boundary: ~80 GeV at LHC 

∝ Z2 →

∼ γℏc/r

r

50

These EM fields can 
interact with the other ion



Example: J/Psi production
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A candidate event with exclusive two muons



Example: J/Psi production
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Coherent: target does not break up 
typically smaller momentum transfer 

sensitive to gluon PDF



n.b. J/Psi production
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Incoherent: typically larger 
momentum transfer 

sensitive to sub-nucleon 
fluctuations

This example is technically ep and not UPC, but just as 
an example what we can learn from this kind of system

Phys. Rev. D 94, 034042 (2016)PLB568:205,2003 EPJC46:585,2006



Exclusive dijet
• Ultraperipheral AA collision producing a pair of jets 

•  = scale;  = “transverse kick” of the dijet 
system 
 
 
 
 
 
 

⃗P T
⃗QT
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Exclusive dijet

55Phys. Rev. Lett. 131 (2023) 051901



Photon-photon scattering

56Phys. Lett. B 797 (2019) 134826 JHEP 03 (2021) 243



Limits on potential axion-like particle

57 JHEP 03 (2021) 243



 with gτ − 2 γγ → ττ

58

UPC results competitive with LEP 
Looking forward to new data :)

https://arxiv.org/abs/2406.03975 PRL 131 2023 151803

https://arxiv.org/abs/2406.03975


Wrap up: Heavy ions



Synergy with EIC
• Heavy ion results are usually a combination 

between hot nuclear effect (those related to the 
presence of QGP) and cold nuclear effect (PDFs, 
nuclear energy loss, etc) 

• But not always: in some cases like the UPCs cold 
nuclear effect dominate 

• EIC can provide precision measurements on many 
things on the cold nuclear effect side
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Heavy ion collisions
• Due to time constraints a lot of interesting subfields are not 

mentioned — happy to discuss more later :) 

• QGP: phase of matter where partons are not confined in hadrons 

• Behaves like a hot quantum liquid 

• We can study it through the decay products or through 
interaction of particles with it 

• Ultraperipheral collision (UPC): ions miss each other and we 
have EM-initiated interactions 

• Synergy and connection with other fields of study, including EIC 
physics
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Part 2: Jets



Goals for this part
• Heavy ion physics: what is it, why do we study it, 

how is it relevant to EIC 

• How do we study the QGP?  What have we 
learned? 

• Jets basics: what are they and how do they 
develop in vacuum?  What do they look like? 

• Application of jets: Why do we love them & how do 
we use it in various contexts to learn the physics we 
are after?
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Jets in vacuum



Partons from collisions
• Suppose we have high-energy 

quarks or gluons going out in collision 

• It carries high virtuality  

• “Violentness” of the collision 

• Highly virtual = “imbalanced” 
momentum:  

• Link to uncertainty principle

Q2

E2 − p2 ≠ m2
0
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 shower into jetsq/g
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Highly virtual g/q split repeatedly
Each g/q develops into a spray of final particles (= jets)

TASSO DESY 1980e+e− → qq̄g

q/g
No QGP

…

Jets = proxy for initial g/q



Examples of how it looks like
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Examples from  collision from ALEPHe+e−



Parton shower: closer look
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Parton emission example
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Simulating the shower: roadmap
• Strategy: build emission probabilities using cross sections 

• Pick an ordering variable to evolve things 

• Example: virtuality  

• Build “first-emission probability”  

• Emission at  (from cross-sections) 

• No emission between scales  and  (“Sudakov form 
factor”) 

• Throw dices repeatedly until hadronization scale

Q2

P(Q2; Q2
0)

Q2

Q2
0 Q2
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Choice of “ordering variable”
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How do we find jets in 
experiments?



How do we find them?
• We don’t know what comes from what  “clustering algorithm” 

• Example: sequential recombination algorithm 

• Pick some measure to evaluate distances 

• Find the two closest and merge them 

• Repeat until done 

• Stopping condition 

• Inclusive: stop when the minimal distance is large enough 

• Exclusive: if we have only N particles, stop 

→
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Sequential recombination
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The  family of algorithmskT

• Distance  

• Stopping condition  

• : “resolution parameter”  roughly size of jet 

• Some special choices of  

• :  clustering — small  grouped together first 

• : Cambridge/Aachen clustering —  independent 

• : anti-  clustering

dij = min (p2p
T,i, p2p

T,j) ×
Δy2 + Δϕ2

R2
0

diB = p2p
T,i

R0 →

p

p = 1 kT pT

p = 0 pT

p = − 1 kT
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The anti-  algorithmkT

76JHEP 0804:063,2008



Back to the definition of jets
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Jets in detectors
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What do jets look like?



Number of particles
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O(10-20), depending on jet energy

 > 500 MeVpch
T

Phys. Rev. D 100, 052011 (2019)

 > 500 MeVpch
T



Momentum of particles

•  

• Dominated by lower 
momentum particles

ζ = pT,ch/pT,jet

81Phys. Rev. D 100, 052011 (2019)



Shape of the jet
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Cross section vs R
• Cross section ratio between 

different size jets 
 
 

• These are anti-kT jets 

• They are mostly round 

• 10% extra cross section 
between R = 1.0 vs R = 0.8

83 JHEP 05 (2021) 284



So what do jets look like?
• Concentrated: most of the energy concentrated in 

small radius 

• But they do extend quite a bit 

• Fragmentation: a lot of soft particles 

• Mostly light hadrons (e.g. pions) 

• Number of charged particles: typically up to like 
10-20 at LHC energies (lower for EIC/RHIC)
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Jets in Heavy Ions



Submerging into the QGP
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q/g

What will happen?

QGP

Key difference to no-QGP case: 
space-time structure of jet evolution now matters

Detector



Example jets in collisions
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Lots of random energies 
(from QGP) everywhere!



How do we define jets?
• Using the same algorithms gives a lot of extra 

unrelated energy from the QGP 

• The current paradigm is to somehow remove them 
from the jets 

• A bit tricky for complex observables 

• One way to define it: the “net effect” of the high 
energy parton
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Before
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Jet = difference



After
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Jet = difference



Difference
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+ -Jet = 



Again on the definition of jets
• Similar to vacuum, jets are defined by algorithms 

• In this picture, part of QGP that happens to be in the 
same direction of jets is not part of the jet 

• Experimentally we need dedicated background 
subtraction algorithms 

• In the current paradigm, subtraction algorithms 
are not part of the jet definition 

• We assume that physics result stays invariant
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What do we know 
about them
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“Nuclear modification factor”: 
 

σ with QGP (PbPb)
σ without QGP (reference)

∼ 0.6 − 0.7

A lot fewer jets!

Jet

“Jet quenching”

PRC 101 (2020) 034911, PLB 790 (2019) 108-128 PRC 96 (2017) 015202, JHEP 05 (2021) 284

1000 GeV =  MeV 
 MeV

106

TQGP ∼ 160 − 500

>1000x



How to see if jet energy changed?
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γ/Z

q/g

γ/Z

Jet

Before QGP 
Momentum ~balanced

After QGP 
Photon momentum 
remains the same
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Jet

γ/Z

Mean of the distribution drops from reference to PbPb
Jets are losing energy, like 10-20% on average

PRL 119 (2017) 082301
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Jet

γ/Z

Particle in jet

γ Projected

ξT = − ln

SoftHard

In PbPb we see a lot more soft particles in the jets

PRL 121 (2018) 242301

Photon  ~ initial q/g pT pT
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Jet

γ/Z

q/g r

Energy in jets are 
concentrated in a small 

area on average

PRL 122 (2019) 152001

Larger tail observed in 
jets in PbPb

Energy is pushed away!
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Jet

γ/Z

q/g r

(Same plot, just log scale)

Energy in jets are 
concentrated in a small 

area on average

Larger tail observed in 
jets in PbPb

PRL 122 (2019) 152001

Energy is pushed away!



0 0.1 0.2 0.3
Distance from jet center (r)

1

10

(r)ρ
M

om
en

tu
m

 d
en

si
ty

 

Reference
PbPb 0-10%

Photon-tagged jet R = 0.3
CMS

 > 60 GeV
T

| < 1.44 pηPhoton |
| < 1.6η > 30 GeV |

T
Jet p

π8
7 > φ∆

Radial distribution

100

Jet
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Energy in jets are 
concentrated in a small 
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Larger tail observed in 
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Energy is pushed away!



So what happened?

101

Due to interaction with the QGP 
energy is transported away from jets 

a lot more lower energy particles all over the place

q/g

“lost energy”

“lost energy”

Distribution sensitive to interaction mechanism 
For example radiative vs collisional energy loss



So what happened?
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Due to interaction with the QGP 
energy is transported away from jets 

a lot more lower energy particles all over the place

q/g

“lost energy”

“lost energy”

Distribution sensitive to interaction mechanism 
For example radiative vs collisional energy loss



Using jets as a tool



Particles are not uniform
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q/g

From final particles in the detectors we can infer 
evolution properties



Tracing through the history
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Tracing through the history
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1 particle 2 particles? 
1 group?

3 particles? 
2 groups? 

…



Tracing through the history
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1 particle 2 particles? 
1 group?

3 particles? 
2 groups? 

…

Let’s focus on this case



Using the pair to probe things
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q/g
θ

⃗p1

⃗p2

Already many 
interesting things 

to study

For example… is there a resolution scale in QGP?

Idea: If things are too 
close to each other QGP 

might not see them as 
separate objects

Less interaction More interaction



Angles
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Phys. Rev. Lett. 128 (2022) 102001 Phys. Rev. C 107 (2023) 054909



Energy-energy correlator
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Renewed interest in recent years
Different regions with different dominant physics

Measure , probe QGP effect, …αs

arXiv 2402.13864



Jets in EIC



Jets in EIC
• Jets are proxies for quarks/gluons 

• Important tool in EIC 

• Much cleaner than hadronic collisions: precision QCD 
measurements 

• Nuclear PDF 

• Nuclear modification of jets 

• Studying helicity-dependent PDFs 

• …
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Precision QCD measurement
• EIC provides a much 

cleaner environment 
compared to the 
hadron-hadron collider 
results 

• We see everything! 

• Great for performing 
precision QCD 
measurements
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PDF convolution 
No longitudinal control 

More ISR 
MPI



Cold nuclear effects
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Jets can interact with the nuclear matter 
 (cold) nuclear modifications→

Cross section
Jet charge

EIC white paper arXiv 2203.13199



PDFs with jets
• As usual we can study the collinear PDFs 

• Probing low-x 

• Helicity dependent PDFs: through polarized beam 

• So far large errors, EIC expect to improve this 

• Sensitive to TMD PDFs 

• (…and a lot more!) 

115



Looking inside jets
• A lot of information to learn from inside jets 

• Example: hadron-in-jet azimuthal asymmetry 

• Polarized quark inside a polarized nucleon => 
azimuthal asymmetry 
 
 
 
 

116PRD 102, 074015 (2020), PLB 774, 635 (2017), etc



Concluding remarks



Jets: wrapping up
• Highly virtual partons shower into jets 

• Jets are proxies for partons 

• Typically a bunch particles concentrated in small area, 
lots of soft particles 

• Jet quenching effect in QGP: energy gets pushed away 
from the center of the jet 

• Not point-like: contains a lot of information = gold mine 

• Versatile tool in both hot and cold QCD (also some crazy 
people are measuring them in  :) )e+e−
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Backup Slides Ahead
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