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Designing Particle Physics Experiments

e SUpPpPOSE SOMeone gave you a pile
of money to build a particle physics
experiment

 How would you go about it?
 What questions would you ask?

 What would motivate your
choices”?
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Designing Particle Physics Experiments

Physics
measurements?

Accelerator
conditions?
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Mechanical
constraints?

Cost and schedule?



Modern Particle Physics Experiments

* Things we might want to know
* Particle type
* 4 momentum and position of origin
* Charge
* Time of flight

* An integrated system of detectors is required to

achieve this - each technology has strengths and
weaknesses

* NHEP experiments are designed around common
features as they have common reconstruction goals
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Examples - Commonalities

 As much coverage as possible (close to 4m) to measure all particles from
interaction

* Wide variety of technologies (tracking, calorimetery, particle identification...)
providing precise resolution of

e Momentum
* Energy
* Position of closest approach (particle origin/trajectory)

* Collect and analyze data at high rates provided by accelerator facilities

Joe Osborn (BNL) 6



* All measurement techniques ‘
are based on the same

Measuring Particles
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Bethe Bloch
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* Energy loss of a “heavy” charged particle -
Hans Bethe (1930)
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Electron/Positron Energy Loss

* Electrons are light - lose energy faster and »
scatter at larger angles

e For a constant force, acceleration is ®
larger

* Also lose energy via bremsstrahlung - '
accelerated charge!

dE
e 2
 What term dominates depends on incident ( dx )bmm (T + MeC )Z
energy dF 2
( dx ) IMeC
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Photon Interactions

e Photons can also interact via

* Photoelectric effect - absorption of a
photon

 Compton scattering - scattering of a
photon

* Pair production - ete- generation
* With three types of processes, an
interacting photon or electron rapidly leads

to a cascade of electromagnetic particles

* | eads to concept of radiation length
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Radiation Length

 For energies = 10 MeV, electrons primarily 1
lose energy by bremsstrahlung

 Photons convert to electron-positron
pairs - cascade/shower of
electromagnetic particles

 The average distance a high energy
electron loses all but 1/e of its energy is the A

radiation length (Xo) of a material Xo ~
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Calorimeters
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e (Calorimeters use material interactions to -

stop high energy particles [ Etectrons

Lead (Z =82)

Bremsstrahlung

* Typically built of high density materials

1 dE ~1
E dx (Xo™)

0.10

Ionization

 Cascade of electromagnetic particles is |
collected and readout to determine
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* Electromagnetic calorimeter - photons/e+ 0L ——— Ll T
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e Hadronic calorimeter - hadrons
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Calorimeters

 Example - 8 GeV electron simulation on SciFi (scintillating fiber) tungsten
electromagnetic calorimeter
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Calorimeters - Resolution

 Reminder - radiation length only dependent on material
e Typically for ~99% containment of a shower, need ~20 X0

* In a perfect calorimeter, the resolution depends on the number of particles
prOdUCed in the ShOwer Constant term - inhomogeneities,

0.( E) a energy |elakage... -
* Reality is never perfect... SR Db :

T Noise term - readout

. electronic noise
Stochastic term -

Intrinsic shower

fluctuations
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Calorimeters - Resolution
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Multiple Scattering

* Particles can also undergo Rutherford
scattering (scattering from atomic
nuclei)

* Deflects direction through many

small-angle scatters A
. . . ] PDG
* Approximately Gaussian with width 13 6 MoV
. e i 7
Bo By = Bon vz/Xo|1+0.0381n(z/Xp)
 Smaller thickness of material —> t

fewer scatters — > better Thickness of
measurement of particle trajectory radiation lengths
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Tracking

F=qguvx B
L
-
pr|GeV/cl = 0.3B|T| x Rlm/ 1
Y 3
* Charged particles bend in a magnetic field ?
* Measurement of sagitta (radius of curvature) provides the momentum
* For precise measurements, need: X B
* Large B field
* Long lever arm g

* Many measurements along trajectory - but multiple scattering a(p T) ~ pr
scales with the amount of material traversed! PT BL?

NIM 24, 381 (1963)
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Tracking Momentum Resolution

e Momentum resolution has

* Constant term from multiple scattering

e Linear term dependent on measurement
uncertainties

 Need to optimize path length and number of Opr 2 Opr\2 o9 2
measurements on trajectory while minimizing (p ) — ( ) T ( . 9)
_ T T S111
the total material traversed!

Multiple
scattering
term
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Tracking Momentum Resolution

z °F
= 45_ ® 1 ePIC (24.02.1/1.11.0)
« Momentum resolution has E ] | PWG Requirement
3_‘ ..........................
» Constant term from multiple scattering -
e Linear term dependent on measuremen 1 Rl P
. : - P
uncertainties T

 Need to optimize path length and number or 5
. . _ . . P 2 o JpT 2 0-9 2
measurements on trajectory while minimizing (—) = ( ) (siné’)
the total material traversed! b vr

Multiple
scattering
term
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Particle Detection

» Now we know the processes by which radiation and matter interact - how

do we use it to detect radiation?

 What did we want to measure?
4 momentum - energy and momentum
 Charge

* \We need two things:
* Detectors that interact very little with the particle, but enough to

measure a signal (tracking)
» Detectors that can stop a particle and measure the deposited energy

(calorimetry)
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EMCalorimeters (Sampling)

» Different materials do the sampling (provides signal) and absorbing (dense
material to degrade particle energy)

 Example - sPHENIX barrel EMCal, tungsten and scintillating fiber (spaghetti)

o) samp Enip(active)
Epin(active) + I,y (absorber)

fsamp




EMCalorimeters (Sampling)

e Sandwich or Shashlik sampling calorimeters also common

 Some absorber (e.g. lead/tungsten/copper...) interleaved with plates of

scintillator (e.g. plastic/crystal)

HERA-B shashlik ECal
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EMCalorimeters (Homogenous)

* Homogeneous calorimeters use the same material as the absorber and
sampler

CMS Barrel
Pb-Tungstate

Best energy

crystal Homogeneous . Expensive
resolution
Cheaper, Fraction of the
Sampling compact, more shower Is

“customizable” captured
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Hadronic Calorimeters

elektromagnetischer Schauer | |
* Hadrons interact with nuclei and create both e | | o
an electromagnetic and hadronic cascade Fe
* Shower development scales with nuclear y Hadorai
absorption length - analogous to radiation T e | 0o
length - - rej}
150cm
 More complicated than electromagnetic
calorimeters
* Need to be thicker to capture the shower 8
development EET T A
24 OHCal '
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Hadronic Calorimeters

* Fluctuations of the shower development are large, Ilmltlng the energy
resolution capabillities ‘ T

Typical to have ~50% (or larger) stochastic term

g 35: ® Electrons in HCAL :51 .24
> 30— Ereco=1.42E, . - 0.012E> ¥m 1 * Hadrons in HCAL
¢ | e Hadronsin HCAL L) =
D 26F- E <E . c AE/E = 2%(3p/p) ®11.8% ®81.1%/\E
7 20F 50.81
g S L *  Electrons in HCAL
15f— Q -
- T0.6
10E- - AE/E = 2%(3p/p) ®8.7% ®31.3%/\E
= 0.4
g 1.2;— 0.2 —e— o
l;é F —2—e o * 8 2 - _—
§ 08_’_—' ® 0 r a1 l
=l 9 3 10 15 20 25 30 35 0 20 25 9
Input Energy (GeV) Input Energy (GeV)
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Hadronic Calorimeters

* Fluctuations of the shower development are large, Ilmltlng the energy
resolution capabillities ————

12""""|""|""

Typical to have ~50% stochastic tet 2 | (s=140 Gev E
- R=1 Anti-k; eCharged hadrons -

. Q°>10 GeV? e Neutral hadrons -

8~ 0.05<y<0.95 » Photons B

* Nonzero contribution in EIC A JUUBUROR S, o
collisions! Large fraction of jet is i JUUCS ot S

. — o _._...-.-—0—"‘"""“ =

from neutral particles A-e*™ e " -

. o . 2 -
Capturing the entire jet requires e eeseooossoesoooeestessotetet
EMCal+HCal %590 15 20 25 30 35
p; [GeV]
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Next Gen Calorimeters

* Next generation calorimeters combine EMCal and
HCal technologies for 3D (or 4 or 5D) shower
development

e
'f

R R e e R L [P R = R

-

B st R RS S R L
. n-

& S el e e S S S L BT
-

¥ "

« Example - CMS HGHCal:

- B~ '.’,‘ "

o 28 layers tungsten/copper plates with silicon
sensors for EMCal

e 12 layers brass/copper plates with silicon sensors
for HCal

- "‘ l.'.) .:.- :'I
Back thermal screen EE support cone

* Large number of channels for precise shower ‘ |

development determination (e.g. 6M channels vs.
sPHENIX EMCal+HCal with ~28k channels!)
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Tracking Detectors

* Tracking detectors all operate under the same
principle - particle liberates some charge that
IS readout to determine its position

» Reminder - need to limit material interactions ' —
as much as possible! *

* Tracking detector - kind of like a cloud
chamber!

e Spoiler - much more complicated than a
cloud chamber
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lonization and Avalanche

Original ionisation events

Path of / / \
ionising particle i 8 >
1 —s
;6' [

%
s , | '
Boundary of | | |
avalancheregion =~~~ """ T T TTTTATT T %"'"""""'f-‘ """""""""""""
; .*{ \ ] f?/c\)\‘ : \?\
fi ’ | \" 0 ;)
é n‘ 0 ) { f oy ' 0 Q "o ) : % F I' AL
. YY) (YY YA Y YY) (YYY]
Anode wire (+ ve) L ‘ 1A e 1,

Discrete avalanches
» Basic principle of tracking detectors:

e Particle liberates electrons from some material

e Electrons avalanche and are collected to read out
e Position is determined from this information
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Drift/Wire Chambers

* This is the basic principle behind
the wire chamber

Particle

* Particle traverses gas, liberates
electrons, these drift to a wire
which Is read out

* Position and drift timing information
provides O(100) micron hit
iInformation
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Time Projection Chamber

* Particle traverses a gas and liberates
electrons, which drift to a readout plane

-
-
-
"
o
»
-
-
-
o
-
o

”
o
-
-
-
-
-
-
-
-
-
-
a*”
-
-
-
-

* Drift time gives z position

7

L

AT T Quad-GEM Gain Stage
2(2), 12(6), 3(r) Operated @ low IBF
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Time Projection Chamber

sPHENIX Time Projection Chamber
\ 2024-05-11, Run 41990 - Event 10022
! p+p 200 GeV, 1.4 T Magnetic Field

SPHENIX Preliminary
50 trigger frames

-100

1.4T Magnetic Field
p+p 200 GeV

100
A

2(2), 12(9), 3(r)  TrTImTTE S v



GEMs

 Gas Electron Multipliers (GEMSs) use thin
holes in regular patterns to amplify signal

* Typically layers of GEMs provide high gain
readout

 When put under voltage, holes create large
large fields that amplify signals

e Can be mass produced, used at
COMPASS, STAR, sPHENIX...
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Silicon Detectors

Charge collection and amplification
NWELL NMOS PMOS

e Sensor and readout electronics DIODE TRANSISTOR. / TRANSISTOR
iIntegrated onto a single chip . T == j
' DEEP PWELL

h oy
- ;

 Extremely high precision O(microns) -
pixel or strip

 Monolithic Active Pixel (MAPS) devices
are thin - ~0.1%X/Xo per layer

« Examples - MVTX at sPHENIX, ITS at
ALICE

 Large channel count - expensive!
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MPGDs

Drift Electrode _ 300y

" Drift Gap

imm

TPOT (micromegas detector)

2403.13789
Micromesh
- 128pm Amplification Gap e, rem %
Resistive Smps— S S S SEE e S—— —q)o— R R R R . R R R S 400V
Readout Stﬂp& mtor— —_— —. m— — SRR
PCB 12mm

* Micropattern gaseous detector (MPGD) are further evolution of wire chambers
* Provide O(100) micron spatial resolution with fast readout

 Small distances limits space charge accumulation (distorts signal)
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Collider Detector

 More technologies that exist...

 However, these (mostly) cover the ones that are being used or planned to
be used at current/future NHEP experiments

e So let’s return to our cartoon...
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Collider Detector
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Collider Detector

(Silicon) trackers /
first - limit |
material

Interactions
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Collider Detector

EMCal next - stop
photons/electrons
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ollider Detector

HCal - stop
Joe Osborn remaining hadrons 40




Collider Detector

Muon chambers -
Joe Osborn (E 41 heavy |ept0nS SurVive!




Summary

* This set of slides only scratches the surface - field is full of creative and
hard working people that are excited about the next breakthrough

 So far we have discussed only some detector technologies that are used
iINn modern NHEP experiments

* \We have some detectors that measure (only!) signals of a particle.
Tomorrow: How do we turn this into a physics measurement?
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