Calorimetry and Tracking - Day 1

Joe Osborn Brookhaven National Laboratory June 10, 2024

Designing Particle Physics Experiments

- Suppose someone gave you a pile of money to build a particle physics experiment
- How would you go about it?
- What questions would you ask?
- What would motivate your choices?

Designing Particle Physics Experiments

Physics measurements?

Accelerator conditions?

Mechanical constraints?

Cost and schedule?

Modern Particle Physics Experiments

- Things we might want to know
 - Particle type
 - 4 momentum and position of origin
 - Charge
 - Time of flight
- An integrated system of detectors is required to achieve this - each technology has strengths and weaknesses
- NHEP experiments are designed around common features as they have common reconstruction goals

Joe Osborn (BNL)

Examples

Examples - Commonalities

- interaction
- providing precise resolution of
 - Momentum
 - Energy
 - Position of closest approach (particle origin/trajectory)
- Collect and analyze data at high rates provided by accelerator facilities

• As much coverage as possible (close to 4π) to measure all particles from

• Wide variety of technologies (tracking, calorimetery, particle identification...)

Measuring Particles

- All measurement techniques are based on the same general principle
- "Amplify and read out a signal that is measured from the particle's interaction with some matter"
- Therefore: important to understand how particles interact with matter

7

Bethe Bloch

- Energy loss of a "heavy" charged particle Hans Bethe (1930)
- For a particle with some charge and velocity $\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$
 - Valid for 0.1<βγ<1000 within a few percent. Outside of this, other effects become important (e.g. radiative)

Electron/Positron Energy Loss

- Electrons are light lose energy faster and scatter at larger angles
 - For a constant force, acceleration is larger
- Also lose energy via bremsstrahlung accelerated charge!
- What term dominates depends on incident energy

 $\left(\frac{dE}{dx}\right)_{brem}$ $(T+m_ec^2)Z$ $m_e c^2$ (\underline{dE}) $ar{dx}$,

Photon Interactions

- Photons can also interact via
 - Photoelectric effect absorption of a photon
 - Compton scattering scattering of a photon
 - Pair production e+e- generation
- With three types of processes, an interacting photon or electron rapidly leads to a cascade of electromagnetic particles
 - Leads to concept of radiation length

- For energies \gtrsim 10 MeV, electrons primarily lose energy by bremsstrahlung
 - Photons convert to electron-positron pairs - cascade/shower of electromagnetic particles
- The average distance a high energy electron loses all but 1/e of its energy is the radiation length (X₀) of a material

Calorimeters

- Calorimeters use material interactions to stop high energy particles
 - Typically built of high density materials
- Cascade of electromagnetic particles is collected and readout to determine energy of incident particle
- Electromagnetic calorimeter photons/e[±]
- Hadronic calorimeter hadrons

Calorimeters

electromagnetic calorimeter

Example - 8 GeV electron simulation on SciFi (scintillating fiber) tungsten

Calorimeters - Resolution

- Reminder radiation length only dependent on material
- Typically for ~99% containment of a shower, need ~20 X0
- In a perfect calorimeter, the resolution depends on the number of particles produced in the shower Constant term inhomogeneities,
- Reality is never perfect...

Calorimeters - Resolution

- Particles can also undergo Rutherford scattering (scattering from atomic nuclei)
 - Deflects direction through many small-angle scatters
 - Approximately Gaussian with width θ_0
- Smaller thickness of material ->fewer scatters -> better measurement of particle trajectory

Multiple Scattering

Thickness of material in radiation lengths

$\vec{F} = q\vec{v} \times \vec{B}$ $p_T[GeV/c] = 0.3B[T] \times R[m]$

- Charged particles bend in a magnetic field ullet
- Measurement of sagitta (radius of curvature) provides the momentum •
- For precise measurements, need: lacksquare
 - Large B field
 - Long lever arm ullet
 - Many measurements along trajectory but multiple scattering scales with the amount of material traversed!

- Momentum resolution has
 - Constant term from multiple scattering
 - Linear term dependent on measurement uncertainties
- Need to optimize path length and number of measurements on trajectory while minimizing the total material traversed!

Multiple scattering term

Tracking Momentum Resolution

- Momentum resolution has
 - Constant term from multiple scattering
 - Linear term dependent on measurement uncertainties
- Need to optimize path length and number or measurements on trajectory while minimizing the total material traversed!

Multiple scattering term

- Now we know the processes by which radiation and matter interact how do we use it to detect radiation?
- What did we want to measure?
 - 4 momentum energy and momentum
 - Charge
- We need two things:
 - Detectors that interact very little with the particle, but enough to measure a signal (tracking)
 - Detectors that can stop a particle and measure the deposited energy (calorimetry)

Particle Detection

EMCalorimeters (Sampling)

- Sandwich or Shashlik sampling calorimeters also common
- scintillator (e.g. plastic/crystal)

ATLAS liquid Argon calorimeter

Joe Osborn (BNL)

Some absorber (e.g. lead/tungsten/copper...) interleaved with plates of

HERA-B shashlik ECal

EMCalorimeters (Homogenous)

sampler

CMS Barrel Pb-Tungstate crystal

Joe Osborn (BNL)

Homogeneous calorimeters use the same material as the absorber and

	Pros	Cons
Homogeneous	Best energy resolution	Expensive
Sampling	Cheaper, compact, more "customizable"	Fraction of the shower is captured

Hadronic Calorimeters

- Hadrons interact with nuclei and create both an electromagnetic and hadronic cascade
 - Shower development scales with nuclear absorption length - analogous to radiation length
- More complicated than electromagnetic calorimeters
- Need to be thicker to capture the shower development

Hadronic Calorimeters

- resolution capabilities
- Typical to have ~50% (or larger) stochastic term

Joe Osborn (BNL)

Fluctuations of the shower development are large, limiting the energy

IEEE TNS 65 (2018) 12, 2901

Hadronic Calorimeters

- Fluctuations of the shower development of the shower deve
- Typical to have ~50% stochastic ter ^{z[§]}
 - Nonzero contribution in EIC collisions! Large fraction of jet is from neutral particles
 - Capturing the entire jet requires EMCal+HCal

• Fluctuations of the shower development are large, limiting the energy

Next Gen Calorimeters

- Next generation calorimeters combine EMCal and HCal technologies for 3D (or 4 or 5D) shower development
- Example CMS HGHCal:
 - 28 layers tungsten/copper plates with silicon sensors for EMCal
 - 12 layers brass/copper plates with silicon sensors for HCal
- Large number of channels for precise shower development determination (e.g. 6M channels vs. sPHENIX EMCal+HCal with ~28k channels!)

- Tracking detectors all operate under the same principle - particle liberates some charge that is readout to determine its position
- Reminder need to limit material interactions as much as possible!
- Tracking detector kind of like a cloud chamber!
 - Spoiler much more complicated than a cloud chamber

Tracking Detectors

Drift/Wire Chambers

- This is the basic principle behind the wire chamber
- Particle traverses gas, liberates electrons, these drift to a wire which is read out
- Position and drift timing information provides O(100) micron hit information

Time Projection Chamber

- Particle traverses a gas and liberates electrons, which drift to a readout plane
- Drift time gives z position
- Long drift compared to wire chambers

Joe Osborn (DNL)

Joe Osborn

- Gas Electron Multipliers (GEMs) use thin holes in regular patterns to amplify signal
- Typically layers of GEMs provide high gain readout
- When put under voltage, holes create large large fields that amplify signals
- Can be mass produced, used at COMPASS, STAR, sPHENIX...

GEMS

- Sensor and readout electronics integrated onto a single chip
- Extremely high precision O(microns) pixel or strip
- Monolithic Active Pixel (MAPS) devices are thin - $\sim 0.1\%$ X/X₀ per layer
- Examples MVTX at sPHENIX, ITS at ALICE
- Large channel count expensive! \bullet

Silicon Detectors

- Provide O(100) micron spatial resolution with fast readout
- Small distances limits space charge accumulation (distorts signal)

MPGDs

Micropattern gaseous detector (MPGD) are further evolution of wire chambers

Collider Detector

- More technologies that exist...
- be used at current/future NHEP experiments
- So let's return to our cartoon...

However, these (mostly) cover the ones that are being used or planned to

(Silicon) trackers <u>first - limit</u> **material interactions**

EMCal next - stop photons/electrons

remaining hadrons

Summary

- This set of slides only scratches the surface field is full of creative and hard working people that are excited about the next breakthrough
- So far we have discussed only some detector technologies that are used in modern NHEP experiments
- We have some detectors that measure (only!) signals of a particle. Tomorrow: How do we turn this into a physics measurement?