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Review
• Tracking - small material detectors to 

measure signals where particles traverse. 
Use the signals to determine the particle 
trajectory in magnetic field


• Measures 3 momentum, charge, and 
position of track


• Calorimetry - Dense material detectors to 
stop particles. Use signals to determine 
particle energy


• Measures charged and neutral energy 
deposited by particles
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Now What?

• Detectors each register a pulse or 
signal (typically called a “hit”)


• This does not tell us anything 
about the particle itself! 


• Necessary to reconstruct the data 


• Event reconstruction - putting 
all the pieces together

Hits

Particles
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Reconstruction

??????
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Clustering
• We have implicitly assumed that one particle deposits charge into one readout unit


• Generally not the case - particles may enter active detector volume at an angle, 
shower may develop broadly, etc…


• Example - Single 8 GeV electron enters (middle and normal to!) EMCal tower
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Clustering Algorithms
• Many clustering algorithms have been 

developed, all have pros and cons for 
different use cases


• Simple example - 3x3 tower sum around 
max tower energy


• Complex example - island clustering or 
topological clustering
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Calo Clustering Algorithms
• What does a good clustering algorithm do?


• Determines best position and energy resolution possible, limited only by 
inherent detector resolution


• Properly assigns neighboring towers or energy deposits to appropriate 
cluster (gets the cluster shape correct)


• Mitigates effects from detector noise, beam pile up, other backgrounds


• (Potentially) connects clusters from adjacent calorimeters (e.g. 
EMCal+HCal)
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Calo Clustering
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Cluster Shower Shapes

• Can use information from 
clustering to help with 
particle ID


• Example - development of 
pion vs. electron shower 
is different in EMCal!


• Can optimize signal —> 
background accordingly
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Cluster Corrections
• Calorimeters are not perfect - 

some energy escapes 
detection or is lost completely 
due to mechanical constraints


• Example - sPHENIX EMCal 
block boundaries


• Reconstructed cluster energy 
for 8 GeV electron has large 
position dependence
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Cluster Calibration

• Can calibrate cluster energies based on position dependence


• May depend on electron or photon signal (electrons bend!)
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Clustering - Tracking

• Clustering often performed in local coordinates (calorimeters can be similar)


• Cluster position in global coordinates is determined by applying sensor 
transformation (affine translation+rotation)


• Cluster size is important for precise position determination!
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Track Reconstruction

• Track reconstruction requires 
correlating clusters across detectors


• For a single track, one could easily pick 
out the clusters that belong to it


• Straightforward enough to write an 
algorithm to do this
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Track Reconstruction
• What if you have 20 particles?


• What if you have 10,000 particles, leaving 
O(100,000) clusters in your tracking layers?


• What if your detector has hot/dead areas 
that add/miss clusters?


• What if many of the clusters are from 
background sources not associated with 
the physics event?


• …
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Track Reconstruction

• Three stages of track reconstruction


• Seeding - obtaining initial guess for 
the track


• Finding - adding additional clusters 
to the track


• Fitting - determine final track 
parameters precisely
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Track Fitting
• Kalman Filter - powerful algorithm that 

uses measurements as a function of time 
to produce estimates of unknown 
variables


• Examples - navigation of vehicles, 
signal processing, robotic motion, 
trajectory optimization… 


• In NHEP, Kalman Filters are used to 
precisely determine the track parameters
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Combinatorial Kalman Filter

• The Combinatorial Kalman Filter (CKF) 
combines track finding and fitting


• Produces branches of possible track 
candidates from initial seed estimates


• Requires tuning of allowed 
measurements via χ2 and ambiguity 
resolution
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Vertex Reconstruction
• With reconstructed tracks, can 

propagate back to a common 
origin to determine collision 
vertex


• Vertex finders/fitters operate 
similarly to tracking finding/
fitting


• Important to differentiate between 
primary, secondary, and pile up 
vertices!
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Track Reconstruction Challenges
• Computationally expensive 


• Scales quadratically with the 
number of clusters in the event


• Scales linearly with the number 
of track seeds created


• Track reconstruction needs to 
have high efficiency and purity to 
maximize physics and CPU 
resources
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EIC Tracking Challenges

• EIC has low physics collision rate, despite high luminosity (~ɑEM2)

• Events have diverse topology —> stream 100% of the data rather than trigger on events

• Large background rate compared to physics collision rate
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Event Reconstruction
• In a streaming system, the “event unit” is 

a time frame


• Reconstruction must operate in a time 
frame, identifying real physics events


• Collision of interest may have out of time 
pile up or hits embedded in it!


• Track and calorimeter reconstruction 
moving towards 4 and 5 dimensional (e.g. 
HGHCal, CALICE, ePIC forward HCal 
insert, tracking at sPHENIX, ePIC, LHC…)
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4D Track Reconstruction
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• Requiring MVTX clusters on track 
(5 μs readout) greatly reduces 
out of time pileup


• Requiring INTT clusters on track 
almost entirely eliminates pileup
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4D Track Reconstruction
• Example - TPC has readout time of 

~13 μs, while RHIC collides at ~100 
ns


• TPC resolves entire RHIC bunch 
structure!


• Requiring MVTX clusters on track (5 
μs readout) greatly reduces out of 
time pileup


• Requiring INTT clusters (~100 ns 
readout) on track almost entirely 
eliminates pileup
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4D Track Reconstruction

• Similar concept at ePIC - silicon slow (5 μs) and MPGD fast (~10s ns)

• Silicon sensitive to O(500) bunch crossings!
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Reminder
• We started out saying we wanted to know all particles


• 4 momentum and position of origin (position of closest approach to 
vertex)


• Charge


• Particle type (need PID, but we can use some tricks with tracking and 
calorimetry)


• We have this information from tracks + calorimeter clusters. Can we 
combine them?
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Particle Flow

31

• Connecting tracks to 
calorimeter clusters is the basis 
for particle flow algorithms to 
create real particles with 4 
momenta


• In principle - easy


• In practice - very complex as 
there are many different 
situations the algorithm needs 
to consider
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Electron Finding

• Electron finding is made easier since electromagnetic showers are more contained 
than hadronic showers


• Can match tracks to calorimeter clusters and make strong energy/momentum cuts

• Electrons deposit nearly all energy into EMCal, hadrons should not
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Jet Finding

34

• Physics definition of a jet - spray of 
particles resulting from a high 
energy parton


• Experimental definition - what a jet 
reconstruction algorithm determines 


• Could find jets with calo clusters, 
tracks, particle flow objects…
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Jet Finding

• Most common jet algorithm at hadron colliders is anti-kT


• However, new algorithms can be defined that better suit DIS kinematics
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Backgrounds

• Event reconstruction is significantly simpler in the single physics event 
simulation world


• Real life has contributions from many different background sources


• Synchrotron radiation, electron/proton beam gas background, beam 
pipe effects…


• Even reconstruction has to handle these contributions
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Backgrounds - Examples

• Example - electron and hadron beam gas backgrounds currently expected 
to provide millions of additional hits per second in detectors!


• Synchrotron radiation backgrounds need to be understood too

38

Electron beam gas
Hadron beam gas



Joe Osborn (BNL)

Backgrounds - Examples

• Example - electron and hadron beam gas backgrounds currently expected 
to provide millions of additional hits per second in detectors!


• Synchrotron radiation backgrounds need to be understood too

39

Electron beam gas
Hadron beam gas



Joe Osborn (BNL)

(Some) Conclusions
• Modern particle physics experiments are an incredibly complex system of 

hardware, computing, engineering, and science

• Things I didn’t cover in the detail they deserve

• Interplay between DAQ, streaming readout, and reconstruction

• Calibrations - energy calibrations, tracker alignment…

• Analysis techniques - unfolding, efficiencies, resolutions…

• Many hardware/software R&D efforts 

• …


• 2 hours only scratching the surface - new detector R&D and algorithmic/
computational R&D are pushing the field forward


• EIC has a long but exciting road ahead!
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