Phenomenology of unpolarised TMDs

giuseppe bozzi University and INFN, Cagliari

Collinear PDF (FF)

Collinear PDF f(x)

depend on: $\bigcirc x =$ longitudinal-momentum fraction

Collinear PDF (FF)

Collinear PDF f(x)

depend on:

 $\bigcirc x =$ longitudinal-momentum fraction

1-dim imaging

TMD PDF (FF)

Transverse Momentum Dependent PDF $F(x, k_{\perp})$ depend on: x = longitudinal-momentum fraction $k_{\perp} = (intrinsic) \text{ transverse-momentum}$

TMD PDF (FF)

Transverse Momentum Dependent PDF $F(x, k_{\perp})$ depend on: x =longitudinal-momentum fraction $k_{\perp} = (intrinsic)$ transverse-momentum

3-dim imaging

TMD PDF (FF)

Transverse **M**omentum **D**ependent **PDF** $F(x, k_{\perp})$ depend on: x =longitudinal-momentum fraction $k_{\perp} = (intrinsic)$ transverse-momentum

3-dim imaging

Processes for which TMD factorisation has been **proven**:

Factorising processes

Processes for which TMD factorisation has been proven:

Drell-Yan

- $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$
- Two TMD PDFs
- Lots of data:

low-energy: FNAL

mid-energy: RHIC

high-energy: Tevatron, LHC

Factorising processes

Processes for which TMD factorisation has been proven:

Drell-Yan

Semi-inclusive DIS

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h \ X$

One TMD **PDF** one **FF**

- **Two** TMD **PDFs**
- Lots of data:

low-energy: FNAL

mid-energy: RHIC

many precise data points:

HERMES at DESY

COMPASS at CERN

high-energy: Tevatron, LHC

Factorising processes

Processes for which TMD factorisation has been **proven**:

Drell-Yan

 e^+e^- annihilation

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

- Two TMD PDFs
- Lots of data:

Olow-energy: FNAL

mid-energy: RHIC

high-energy: Tevatron, LHC

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h X$

- One TMD **PDF** one **FF**
- many precise data points:
 - HERMES at DESY
 - COMPASS at CERN

 $\ell^{\pm}\ell^{\mp} \to h_1 h_2 X$

- Two TMD FFs
- DIA process from:
 - BELLE at KEK
 - BABAR at SLAC

TMD factorisation for DY

TMD factorisation for DY

TMD factorisation for SIDIS

$$\frac{d\sigma}{dx\,dz\,dq_T\,dQ} \propto x H^{SIDIS}(Q,\mu) \sum_q c_q(Q^2) \int d^2 \mathbf{k}_\perp \int \frac{d^2 \mathbf{P}_\perp}{z^2} \left[F^q(x,\mathbf{k}_\perp^2;\mu,\zeta_A) \right] D^{q\to h}(z,\mathbf{P}_\perp^2;\mu,\zeta_B) \delta^{(2)}(\mathbf{k}_\perp + \mathbf{P}_\perp/z + \mathbf{q}_T)$$

TMD factorisation for SIDIS

TMD factorisation for SIDIS

Kinematics

$$q_T^{\mu} = -\frac{P_{hT}^{\mu}}{z} - 2x \frac{q_T^2}{Q^2} P^{\mu} \approx -\frac{P_{hT}^{\mu}}{z} \quad (\text{if } q_T^2, P_{hT}^2 \ll Q^2) \quad \longrightarrow \quad P_{hT}^{\mu} \approx zk_{\perp} + P_{\perp}$$

TMD factorisation for DIA

TMD factorisation for DIA

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

- matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$
- perturbative

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad :A$$

$$\times \left[\exp\left\{ K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'} \right] \right\} \qquad :B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

- matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$
- perturbative

• CS and RGE evolution to large $b_{\rm T}$

perturbative

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NNLL	1	2	3	NLO
N ³ LL	2	3	4	NNLO

Accuracy	H and C	$K ext{ and } \gamma_F$	PDF and α_s evolution	
LL	0	_	1	_
NLL	0	1	LO	
NLL'	1	1 2 1		NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	LO	
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

Accuracy	H and C	$K ext{ and } \gamma_F$	$\gamma_F \mid \gamma_K \mid ext{PDF} ext{ and } lpha_s ext{ evolution}$		
LL	0	_	1	_	
NLL	0	1	LO		
NLL'	1	1	2	NLO	
NNLL	1	2	3	NLO	
NNLL'	2	2	3	NNLO	
N ³ LL	2	3	4	NNLO	

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

NLL' $\left(\tilde{C}^0 + \alpha_S \tilde{C}^1\right) \quad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$

Accuracy	H and C	$K ext{ and } \gamma_F$	$\operatorname{id}\gamma_F \mid \gamma_K \mid \operatorname{PDF} \operatorname{and} \alpha_s \operatorname{evolu}$		
LL	0	_	1	_	
NLL	0	1	LO		
NLL'	1	1	2	NLO	
NNLL	1	2	3	NLO	
NNLL'	2	2 3 NNI		NNLO	
N ³ LL	2	3	4	NNLO	

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

NLL' $\left(C^0 + \alpha_S C^1\right) \quad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$

same logarithmic accuracy (difference = NNLL)

$$\mathbf{TMD structure}$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \underbrace{\sum_j C_{f/j}(x, b_{\ast}, \mu_b, \zeta_F)}_{j} \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \underbrace{\exp\left\{K(b_{\ast}, \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\}}_{\times} \qquad : B$$

$$\times \underbrace{\exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F, 0}}\right\}}_{K} \qquad : C$$

• matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$

operturbative

- $\left(\mu_b = 2e^{-\gamma_E}/b_*\right)$
- CS and RGE evolution to large b_T
 perturbative
 - b_* prescription to avoid Landau pole

Non-perturbative: b^* and f_{NP}

$$\mathbf{TMD structure}$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_{\mathbb{F}} \mid \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_{\mathbb{F}} \mid \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad f_{NP} \qquad : C$$
• matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$
• perturbative

- CS and RGE evolution to large $b_{\rm T}$
 - **perturbative**
 - *b** prescription to avoid Landau pole
 - *f*_{NP} "parametrises" the **non- perturbative** transverse modes
 - **fit** $f_{\rm NP}$ to data

Non-perturbative: b* and f_{NP}

$$F(x,b;\mu,\zeta) = \left[\frac{F(x,b;\mu,\zeta)}{F(x,b_*(b);\mu,\zeta)}\right]F(x,b_*(b);\mu,\zeta)$$

Non-perturbative: b* and f_{NP}

- ▶ NP is <u>unavoidable</u>: intrinsically tied to regularisation procedure
- There is not a universal form factor:
 - depends on details of b* and collinear PDFs
 - requires definition of a functional form
 - determined through a fit to experimental data

The extraction of TMD PDFs and FFs from low-pT data

Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	$Q \; [\text{GeV}]$	$y \text{ or } x_F$	Lepton cuts
E605	50	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_{F} = 0.1$	-
E772	53	$Ed^{3}\sigma/d^{3}q$	38.8	5 - 15	$0.1 < x_F < 0.3$	-
E288 200 GeV	30	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40	-
E288 300 GeV	39	$Ed^{3}\sigma/d^{3}q$	23.8	4 - 12	y = 0.21	-
E288 400 GeV	61	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03	-
STAR 510	7	$d\sigma/d m{q}_T $	510	73 - 114	y < 1	$p_{T\ell} > 25 \text{ GeV} \\ \eta_{\ell} < 1$
PHENIX200	2	$d\sigma/d m{q}_T $	200	4.8 - 8.2	1.2 < y < 2.2	-
CDF Run I	25	$d\sigma/d m{q}_T $	1800	66 - 116	Inclusive	-
CDF Run II	26	$d\sigma/d \boldsymbol{q}_T $	1960	66 - 116	Inclusive	-
D0 Run I	12	$d\sigma/d m{q}_T $	1800	75 - 105	Inclusive	-
D0 Run II	5	$(1/\sigma)d\sigma/d q_T $	1960	70 - 110	Inclusive	-
D0 Run II (μ)	3	$(1/\sigma)d\sigma/d {m q}_T $	1960	65 - 115	y < 1.7	$p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7$
LHCb 7 TeV	7	$d\sigma/d m{q}_T $	7000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ 2 < $\eta_{\ell} < 4.5$
LHCb 8 TeV	7	$d\sigma/d \boldsymbol{q}_T $	8000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ 2 < $\eta_{\ell} < 4.5$
LHCb 13 TeV	7	$d\sigma/d \boldsymbol{q}_T $	13000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ 2 < $\eta_{\ell} < 4.5$
CMS 7 TeV	4	$(1/\sigma)d\sigma/d \mathbf{q}_T $	7000	60 - 120	y < 2.1	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.1$
CMS 8 TeV	4	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	60 - 120	y < 2.1	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 2.1$
CMS 13 TeV	70	$d\sigma/d m{q}_T $	13000	76 - 106	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2.4 \end{split}$	$p_{T\ell} > 25 \text{ GeV}$ $ \eta_{\ell} < 2.4$
ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	7000	66 - 116	$\begin{split} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{split}$	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$
ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/d \mathbf{q}_T $	8000	66 - 116	$\begin{split} y &< 0.4 \\ 0.4 &< y &< 0.8 \\ 0.8 &< y &< 1.2 \\ 1.2 &< y &< 1.6 \\ 1.6 &< y &< 2 \\ 2 &< y &< 2.4 \end{split}$	$\begin{array}{l} p_{T\ell} > 20 ~{\rm GeV} \\ \eta_\ell < 2.4 \end{array}$
ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \ \text{GeV} \\ \eta_{\ell} < 2.4 \end{array}$
ATLAS 13 TeV	6	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	13000	66 - 113	y < 2.5	$p_{T\ell} > 27 \text{ GeV} \\ \eta_{\ell} < 2.5$
Total	484					

cut at

Q > 1.4 GeV (collinear factorisation)

0.2 < z < 0.7 (no exclusive processes)

 $P_{hT}|_{max} = min[min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

 $(q_T/Q < 0.2)$

SIDIS data sets

Experiment	$N_{\rm dat}$	Observable	Channels	$Q \; [\text{GeV}]$	x	z	Phase space cuts
HERMES	344	$M(x, z, \mathbf{P}_{hT} , Q)$	$\begin{array}{c} p \rightarrow \pi^+ \\ p \rightarrow \pi^- \\ p \rightarrow K^+ \\ p \rightarrow K^- \\ d \rightarrow \pi^+ \\ d \rightarrow \pi^- \\ d \rightarrow K^+ \\ d \rightarrow K^- \end{array}$	$1 - \sqrt{15}$	0.023 < x < 0.6 (6 bins)	0.1 < z < 1.1 (8 bins)	$\begin{array}{l} W^2 > 10 \ {\rm GeV^2} \\ 0.1 < y < 0.85 \end{array}$
COMPASS	1203	$M(x,z,\boldsymbol{P}_{hT}^2,Q)$	$\begin{array}{c} d ightarrow h^+ \\ d ightarrow h^- \end{array}$	1 - 9 (5 bins)	0.003 < x < 0.4 (8 bins)	0.2 < z < 0.8 (4 bins)	$\begin{array}{l} W^2 > 25 \ {\rm GeV^2} \\ 0.1 < y < 0.9 \end{array}$
Total	1547						

Experimental uncertainties

$$m_i \pm \sigma_{i,\text{stat}} \pm \sigma_{i,\text{unc}} \pm \sigma_{i,\text{corr}}^{(1)} \pm \dots \pm \sigma_{i,\text{corr}}^{(k)}$$

uncorrelated
 $additive$ multiplicative
 $\chi^2 = \sum_{i,j=1}^n (m_i - t_i) V_{ij}^{-1} (m_j - t_j)$
 $\sigma_{i,\text{corr}}^{(1)} \equiv \delta_{i,\text{corr}}^{(l)} m_i$
covariance matrix

$$V_{ij} = s_i^2 \delta_{ij} + \left(\sum_{l=1}^{k_a} \delta_{i,\text{add}}^{(l)} \delta_{j,\text{add}}^{(l)} + \sum_{l=1}^{k_m} \delta_{i,\text{mult}}^{(l)} \delta_{j,\text{mult}}^{(l)}\right) m_i m_j$$

Shifted predictions

systematic shift

recover the form of the uncorrelated definition

penalty term

	Accuracy	HERMES	COMPASS	DY fixed target	DY collider	N of points	χ²/N _{points}
Pavia 2017 <mark>arXiv:1703.10157</mark>	NLL	~	~	*	>	8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL-	~	~	*	>	1039	1.06
MAP22 arXiv:2206.07598	N ³ LL ⁻	~	~	•	~	2031	1.06

+ brand new MAP24, N3LL, flavour-dependent, arXiv: 2405.13833

Global extractions: quick facts

Functional forms

Fit quality: SIDIS

Fit quality: Drell-Yan

E288

CMS

10

8

6

 $|q_T|[{
m GeV}]$

4

0

 $\mathbf{2}$

12

TMD PDFs

28

Collins-Soper kernel

 $K(|\boldsymbol{b}_T|, \mu_{b_*}) = K(b_*, \mu_{b_*}) + g_K(|\boldsymbol{b}_T|)$

Collins-Soper kernel

 $K(|\boldsymbol{b}_T|, \mu_{b_*}) = K(b_*, \mu_{b_*}) + g_K(|\boldsymbol{b}_T|)$

Correlation matrix

Parameter	Average over replicas
g_2 [GeV]	0.248 ± 0.008
$N_1 [{ m GeV}^2]$	0.316 ± 0.025
$lpha_1$	1.29 ± 0.19
σ_1	0.68 ± 0.13
λ GeV ⁻¹]	1.82 ± 0.29
$N_3 \; [{ m GeV}^2]$	0.0055 ± 0.0006
eta_1	10.23 ± 0.29
δ_1	0.0094 ± 0.0012
γ_1	1.406 ± 0.084
$\lambda_F \; [{ m GeV}^{-2}]$	0.078 ± 0.011
$N_{3B} \ [\text{GeV}^2]$	0.2167 ± 0.0055
$N_{1B} \ [{ m GeV}^2]$	0.134 ± 0.017
$N_{1C} \ [\text{GeV}^2]$	0.0130 ± 0.0069
λ_2 [GeV ⁻¹]	0.0215 ± 0.0058
$\sim \alpha_2$	4.27 ± 0.31
$lpha_3$	4.27 ± 0.13
σ_2	0.455 ± 0.050
σ_3	12.71 ± 0.21
β_2	4.17 ± 0.13
δ_2	0.167 ± 0.006
γ_2	0.0007 ± 0.0110

- $\lambda \sim 2$: weighted Gaussian important
- $\lambda_2 \neq 0$: third Gaussian non-negligible
- g_2 very small standard deviation
- correlation matrix nearly diagonal

MAP

Test: x-dependence

Test: <u>*x*-independent</u> fit at N³LL with Davies, Webber, Stirling (1985) NP parameterisation:

$$f_{\mathrm{NP}}^{\mathrm{DWS}}(b_T, \zeta) = \exp\left[-\frac{1}{2}\left(g_1 + g_2 \ln\left(\frac{\zeta}{2Q_0^2}\right)\right)b_T^2\right]$$

with and without ATLAS data

	Full dataset	No y -differential data
Global $\chi^2/N_{\rm dat}$	1.339	0.895
g_1	0.304	0.207
g_2	0.028	0.093

• χ^2 significantly higher for full dataset (1.339 vs. 1.020)

* *x*-dependence required to describe data

• χ^2 <u>significantly lower</u> without ATLAS data

 \Rightarrow *x*-dependence at N³LL driven by ATLAS data

Test: dependence on qT cut

Test: different SIDIS cuts

$$P_{hT}|_{max} = min[min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$$

34

• (a) $c_1 = 0.4, c_2 = 0.4, c_3 = 0$ • (b) $c_1 = 0.15, c_2 = 0.4, c_3 = 0.2$ • (c) $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ (baseline) • (d) $c_1 = 0.2, c_2 = 0.6, c_3 = 0.4$

• (e)
$$c_1 = 0.2, c_2 = 0.7, c_3 = 0.5$$

configurations

Order	NLL'	NNLL	NNLL'	N ³ LL
χ^2 /d.o.f.	3.19	1.62	1.07	1.02

Test: impact on LHC data

DY beyond NLL

Open problems: SIDIS SIDIS beyond NLL HERMES

NLL'

NNLL

NNLL'

 $N^{3}LL$

Data

12

A note on TMD scales

- A sensible choice of the scales is important to <u>allow perturbation theory</u> <u>to be reliable</u>:
 - **no large unresummed logarithms** should be introduced,
 - each scale has to be set in the **vicinity of its natural (central) value**,
 - **scale variations** give an estimate of h.o. corrections
- In TMD factorisation for DY the relevant scales are $q_{\rm T}$ and Q:
 - $\check{\phi}$ natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$
- In fact, it turns out that (in the \overline{MS} scheme) the **central scales** are:

$$\mu_0 = \sqrt{\zeta_0} = rac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad ext{and} \quad \mu = \sqrt{\zeta} = Q$$

This choice **nullifies** all unresummed logs. One should thus consider:

$$\mu_0 = C_i^{(1)} \mu_b, \quad \sqrt{\zeta_0} = C_i^{(2)} \mu_b, \quad \mu = C_f^{(1)} Q, \quad \sqrt{\zeta} = \sum_{k}^{(2)} Q,$$

A note on TMD scales

To reason why variations of ζ have **no effect** is that:

$$rac{d\sigma}{dq_T} \propto H\left(rac{\mu}{Q}
ight) F_1(\mu, \zeta_1) F_2(\mu, \zeta_2) \quad ext{with} \quad igslash_1 \zeta_2 \stackrel{!}{=} Q^4$$

• It is easy to see that: $F_1(\mu, \zeta_1)F_2(\mu, \zeta_2) = \underbrace{R[(\mu, \zeta_1) \leftarrow (\mu_0, \zeta_0)]R[(\mu, \zeta_2) \leftarrow (\mu_0, \zeta_0)]}_{f(\zeta_1\zeta_2) = f(Q^4)}F_1(\mu_0, \zeta_0)F_2(\mu_0, \zeta_0)$

• The single dependence on ζ_1 and ζ_2 **drops** in the combination:

• i.e., $\zeta_1 = \zeta_2 = Q^2$ but any other choice such that $\zeta_1 \zeta_2 = Q^4$ is **identical**.

• One can choose $\mu_0 = \sqrt{\zeta_0}$:

• not strictly necessary but **probably a conservative choice**.

• At the end of the day, we have **two scales** to be varied:

 $\mu_0 = \sqrt{\zeta_0} = C_i \mu_b$ and $\mu = C_f Q$

Estimate of uncertainties

Theoretical uncertainty estimate on N³LL:

- estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (mimicking resummation scale variations),
- variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,
- inclusion of non-perturbative effects as determined in the **PV19** fit.

Estimate of uncertainties

Theoretical uncertainty estimate on N³LL:

- estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (mimicking resummation scale variations),
- variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,
- inclusion of non-perturbative effects as determined in the **PV19** fit.

Future: matching with F.O.

Matching between TMD and collinear factorisations:

Well-understood procedure at the LHC energies where usually $Q \gg \Lambda_{\text{QCD}}$:

- clear separation of TMD and collinear, non-perturbative confined to very low $q_{\rm T}$.
- Not so much so for current (and future) SIDIS data due to smaller Q:
 - need to *identify* and *study* the transition region.

Future: Exp. Measurements

- TMD factorisation applies for $q_T \ll Q$:
 - the region $q_T \simeq \Lambda_{\text{QCD}}$ is relevant for hadron structure, no matter how large Q_{τ}
 - As Q increases the cross section drops and low q_T becomes hard to access.

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

- Small ϕ^* is mapped onto small q_T , this observable is expected to carry important information on hadron structure.
- Experimentally very clean because it only involves angles.

· 1

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right) \sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right) \sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

Future: Interplay of P and NP

Understanding of theoretical uncertainties is crucial to achieve a reliable extraction of the non-perturbative components from data.

general meeting T. Cridge, last EW WG

Future: W mass measurements

- $p_{Tl} \leftarrow q_{TW} \leftarrow \text{resummation} + \text{intrinsic} k_T$
- All analyses assume flavour-independence
- <u>impact of flavour-dependent intrinsic-k_T comparable to PDF variations</u>

Future: W mass measurements

- $p_{Tl} \leftarrow q_{TW} \leftarrow \text{resummation} + \text{intrinsic} k_T$
- All analyses assume flavour-independence
- <u>impact of flavour-dependent intrinsic-k_T comparable to PDF variations</u>

Future: W mass measurements

- $p_{Tl} \leftarrow q_{TW} \leftarrow \text{resummation} + \text{intrinsic} k_T$
- All analyses assume flavour-independence
- <u>impact of flavour-dependent intrinsic-k_T comparable to PDF variations</u>

