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CHAPTER 1

L1: Origins of Small-x Evolution

1.1 Quark/Quark Scattering in Regge Kinematics

Scattering Amplitude

Consider the cross section for an elementary QCD process: elastic quark/quark
scattering q+ q → q+ q, as shown in Fig. 1.1. Let us work in the center-of-mass
frame. In principle there are two diagrams: the t-channel amplitude (first
diagram) and the u-channel amplitude (second diagram), which differ by a
minus sign due to Fermi-Dirac statistics. Here we refer to the Mandelstam
variables

s ≡ (p1 + p2)2 = (p′
1 + p′

2)2 , (1.1a)
t ≡ (p1 − p′

1)2 = (p′
2 − p2)2 , (1.1b)

u ≡ (p1 − p′
2)2 = (p2 − p′

1)2 , (1.1c)
s+ t+ u = 4m2 , (1.1d)

which compactly describe the kinematics of a 2 → 2 process. A straightforward
application of the Feynman rules from Appendix A in Feynman gauge yields:

iM = iMt + iMu (1.2a)

iMt = [ū′
1
(
igγµ(ta)i′i

)
u1]
(

−igµνδab

t

)
[ū′

2
(
igγν(tb)j′j

)
u2] ,

= ig2

t
(ta)i′i(ta)j′j [ū′

1γµu1][ū′
2γ

µu2] (1.2b)

iMu = (−1)Fermi[ū′
1
(
igγµ(ta)j′i

)
u2]
(

−igµνδab

u

)
[ū′

2
(
igγν(tb)i′j

)
u1]

= −ig2

u
(ta)j′i(ta)i′j [ū′

1γµu2][ū′
2γ

µu1] . (1.2c)
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1. L1: Origins of Small-x Evolution
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Figure 1.1: Quark-quark scattering amplitude to LO in QCD

High-Energy Kinematics: The Eikonal Approximation

Suppose we wish to study the behavior of the quark/quark scattering cross
section in the high-energy limit s → ∞. This is the limit relevant for high-
energy collider experiments like the LHC, but we must take care to completely
specify what we mean by this limit. When taking s → ∞, we have two choices
for what can happen to the other Mandelstam invariants. One possibility is that
we increase the collision energy s → ∞ and also the momentum transfer |t| → ∞
proportionately. This is the hard-scattering limit, referred to as Bjorken
kinematics, in which the scattering angle remains large at high energy because
the exchanged momentum is growing large. In the language of deep inelastic
scattering, this is the large-xB regime. The other possibility is that we can
take s → ∞ while keeping t = const fixed. This is the forward-scattering
limit, known as Regge kinematics, in which the scattering angle decreases
toward zero. In terms of DIS, this corresponds to the small-xB regime.

Let us study the quark/quark cross section in Regge kinematics, for which

s → ∞ , (1.3a)
t = const , (1.3b)
u = 4m2 − s− t → −∞ . (1.3c)

In this limit, the u-channel amplitude (which dominates for back-scattering, the
opposite of Regge kinematics) is completely negligible, giving simply iM ≈ iMt.
This is entirely natural, since the forward-scattering Regge regime is dominated
by t-channel scattering.

In either Bjorken or Regge kinematics, it is very convenient to express the
four-vectors in terms of light-front components, defined in Sec. A.3. Let
us work in the center-of-mass frame with pµ

1 moving along the −z axis and pµ
2

moving along the +z axis. Then the relevant kinematics are

pµ
1 ≈

[
0+ , p−

1 , 0⃗⊥

]
, (1.4a)

pµ
2 ≈

[
p+

2 , 0− , 0⃗⊥

]
, (1.4b)
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1.1. Quark/Quark Scattering in Regge Kinematics

p′ µ
1 ≈

[
0+ , p′ −

1 , p⃗ ′
1 ⊥

]
, (1.4c)

p′ µ
2 ≈

[
p′ +

2 , 0− , p⃗ ′
2 ⊥

]
, (1.4d)

with the Mandelstam invariants given by

s ≈ 2p+
2 p

−
1 , (1.5a)

t ≈ −p′ 2
1⊥ , (1.5b)

u = 4m2 − s− t ≈ −s . (1.5c)

In the strict center-of-mass frame, p−
1 = p+

2 =
√
s/2.

In these high-energy kinematics, we have approximate conservation of
the separate momenta p−

1 , p
+
2 :

p′ −
1 ≈ p−

1 , (1.6a)
p′ +

2 ≈ p+
2 , (1.6b)

p⃗ ′
1 ⊥ = −p⃗ ′

2 ⊥ , (1.6c)

with only a small transverse deflection p⃗ ′
1⊥ between them. This high-energy

approximation, neglecting power-suppressed corrections in

1
p+

2
∼ 1
p−

1
∼ 1√

s
, (1.7)

is appropriate for Regge kinematics and is referred to as the eikonal
approximation.

While we could compute the cross section by squaring the amplitude
iM ≈ iMt, evaluating the traces, and then expanding the result in the eikonal
limit s → ∞, this becomes cumbersome at higher orders in perturbation
theory. Instead, it is advantageous to directly simplify the amplitude itself to
leading power in s. For the spinor products entering (1.2), this is most easily
accomplished with the help of the Gordon identity

ū(p′
1, s

′
1) γµ u(p1, s1) = ū(p′

1, s
′
1)
[

(pµ
1 + p′ µ

1 )
2m + iσµν (p′

1 ν − p1 ν)
2m

]
u(p1, s1)

(1.8)

with σµν = i
2 [γµ , γν ]. To leading power in p′ −

1 =
√
s/2, the incoming and

outgoing momenta are equal:

pµ
1 ≈ p′ µ

1 ≈ (δµ
−) p−

1 , (1.9)

with corrections being suppressed by a relative factor of O (p⊥/
√
s). This allows

us to neglect the second term of (1.8) in favor of the first term, which gives a
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1. L1: Origins of Small-x Evolution

simple result for the spinor product:

ū(p′
1, s

′
1) γµ u(p1, s1) ≈ (pµ

1 + p′ µ
1 )

2m
[
ū(p′

1, s
′
1)u(p1, s1)

]
≈ (δµ

−) p
−
1
m

[
ū(p−

1 , s
′
1)u(p−

1 , s1)
]

≈ 2 (δµ
−) p−

1 δs1s′
1

≈ 2pµ
1 δs1s′

1
, (1.10)

neglecting relative corrections of order O
(
p⊥/p

−
1
)
. The same reasoning, applied

to the other spinor product, yields

ū(p′
2, s

′
2) γµ u(p2, s2) ≈ 2pµ

2 δs2s′
2
. (1.11)

Together, this simplification to the t-channel amplitude gives

iM ≈ ig2

t
(ta)i′i(ta)j′j [ū′

1γµu1][ū′
2γ

µu2]

= 4ig2

t
(ta)i′i(ta)j′j (p1 · p2) δs1s′

1
δs2s′

2

= 2ig2
(s
t

)
(ta)i′i(ta)j′j δs1s′

1
δs2s′

2
. (1.12)

Cross Section

Only the t-channel amplitude contributes to the cross section at leading power
in Regge kinematics, so the amplitude squared averaged over quantum numbers
is given by

⟨M2⟩ ≡ 1
4

∑
s1s′

1s2s′
2

1
N2

c

∑
ii′jj′

(iMt) (iMt)∗

= 1
4N2

c

∑
s1s′

1s2s′
2

∑
ii′jj′

(
(ta)i′i(ta)j′j (tb)ii′(tb)jj′

)(
4g4 s

2

t2
δs1s′

1
δs2s′

2

)

=
(

1
N2

c

tr[tatb] tr[tatb]
)(

4g4 s
2

t2

)
. (1.13)

The color traces can be evaluated for general Nc using the identities (A.5),
giving the color factor

1
N2

c

tr[tatb] tr[tatb] = 1
2tr[tata] = CF

2N2
c

tr[1] = CF

2Nc
. (1.14)

The amplitude squared is then

⟨M2⟩ = 4g4
(
CF

2Nc

)
s2

t2
. (1.15)
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1.1. Quark/Quark Scattering in Regge Kinematics

Given this expression for the amplitude squared, the corresponding
differential cross section is

dσ = 1
2E12E2|v⃗1 − v⃗2|

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

⟨M2⟩(2π)4 δ4(p1 + p2 − p′
1 − p′

2) .

(1.16)

In Regge kinematics, the flux prefactor is

1
2E12E2|v⃗1 − v⃗2|

= 1
8E1E2

= 1
4p−

1 p
+
2

= 1
4p1 · p2

= 1
2s , (1.17)

and we can change variables to light-front coordinates in the phase space and
delta function, giving

dσ = 1
2s
d2p′

1 ⊥ dp
′ −
1

2p′ −
1

d2p′
2 ⊥ dp

′ +
2

2p′ +
2

⟨M2⟩
(2π)2 δ(p

+
2 − p ′ +

2 )δ(p−
1 − p ′ −

1 )δ(p⃗ ′
1 ⊥ + p⃗ ′

2 ⊥) .

(1.18)

We can exhaust the constraints of the delta function by integrating over p′ −
1 ,

p′ +
2 , and p⃗ ′

2 to obtain

dσ

d2p ′
1⊥

= 1
2s

1
4p−

1 p
+
2

⟨M2⟩
(2π)2

= 1
(2s)2

⟨M2⟩
(2π)2 . (1.19)

Finally, we insert the expression (1.15) for the amplitude squared, obtaining

dσ

d2p ′
1⊥

= 4α2
s

CF

2Nc

1
p ′ 4

1⊥
. (1.20)

in terms of αs ≡ g2/4π and using t ≈ −p′ 2
1⊥.

Integrating the differential cross section (1.20) over all p′
1⊥ yields the total

(elastic) cross section at this order,

σtot|LO = 4α2
s

CF

2Nc

∫
d2p′

1⊥
p ′ 4

1⊥

= 4πα2
s

CF

2Nc

∞∫
m2

dp2
1⊥

p′4
1⊥

= 4πα2
s

CF

2Nc

1
m2 . (1.21)

We note that the original integral d2p′
1⊥/p

′ 4
1⊥ has an infrared divergence as

p1⊥ → 0. This is an artifact of our use of bare quarks for the scattering; if we
had instead used a color-neutral system (like a quark/antiquark dipole) then
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1. L1: Origins of Small-x Evolution

the physical scale (the radius of the dipole) would cut this divergence off the
in the IR. Since the exact numerical factors are unimportant for the present
analysis, we just cut the p′ 2

1⊥ integral off with a scale of order the mass m in
the infrared. For QCD with Nc = 3, we have CF = 4/3 and CF

2Nc
= 2

9 .
The eikonal approximation (high-energy / small-x / Regge kinematics)

has substantially simplified the cross section (1.20). Most importantly, the
cross section for t-channel scattering at high energies is unsuppressed as
s → ∞. This is a general feature of high-energy scattering: the interactions are
dominated by the exchange of vector bosons (such as gluons). Other processes
mediated by the exchange of quarks (or even scalars in the case of scalar QCD)
are suppressed by powers of s as s → ∞, such that eikonal scattering is
always dominated by gluon exchange. The gluons which mediate this
high-energy scattering exchange no p−

1 or p+
2 momenta between the high-energy

quarks, essentially carrying only transverse momenta:

qµ ≡ (p1 − p′
1)µ ≈

(
0+ , 0− , −p⃗ ′

1⊥
)
. (1.22)

These exchanged transverse gluons are referred to as Glauber gluons or
Coulomb gluons, for which the only relevant dynamics is transverse to the
eikonal collision axis.

1.2 Radiative Corrections: Soft QCD Bremsstrahlung

C D E

A B

Figure 1.2: Feynman diagrams contributing to the scattering amplitude iM for
the 2 → 3 radiative process q + q → q + q + g. The sum of all the diagrams
is represented by the thick effective vertex on the left, known as the Lipatov
vertex (1.41).

Having computed the cross section for elastic 2 → 2 scattering of quarks
(q + q → q + q) in eikonal kinematics, let us next proceed to study particle
production in this limit. The dominant mechanism of particle production in
eikonal kinematics is the radiation of soft gluon bremsstrahlung as an NLO
correction to the elastic scattering cross section we computed previously.
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1.2. Radiative Corrections: Soft QCD Bremsstrahlung

The Feynman diagrams generating the leading contribution to q+q → q+q+g
are shown in Fig. 1.2. There are 5 diagrams in total. Four of them (A-D) are
totally analogous to the radiation of soft photons in QED; they consist of initial-
and final-state radiation which can be emitted either from the “projectile” (p1)
or the “target” (p2). The last diagram (E) is uniquely non-Abelian, in which
the exchanged gluon itself undergoes bremsstrahlung.

As before, let us consider the case of eikonal scattering in Regge kinematics:
p−

1 , p
+
2 ∼

√
s → ∞. We will moreover focus on the case when the radiated

gluon is “longitudinally soft,” meaning that its light-front momenta k+, k− are
both small compared to the momenta of the incoming particles:

p−
1 ≫ k− ≫ p−

2 , (1.23a)
p+

2 ≫ k+ ≫ p+
1 . (1.23b)

When expressed in terms of the rapidity

y = 1
2 ln k

+

k− (1.24)

this means that we are looking at particle production at mid-rapidity
Y2 ≫ y ≫ Y1. Particle production in this regime preserves the eikonal
approximation because the radiated gluon does not disturb the flow of large
p−

1 and p+
2 through the diagram. This limit is also the limit in which the

longitudinal momentum fraction called (Feynman) x is small, both with respect
to the “projectile” p1 and the “target” p2:

xF,proj ≡ k−

p−
1

≪ 1 , (1.25)

xF,tgt ≡ k+

p+
2

≪ 1 . (1.26)

Initial- vs. Final-State Radiation: Kinematics

k , λ , a

p1 , i p1 − k − q , i′

p2 , j p2 + q , j′

q

p1 − kBp1 , i p1 − k − q , i′

p2 , j p2 + q , j′

q

p1 − qA

k , λ , a

Figure 1.3: Initial-state (B) and final-state (A) radiation amplitudes for
bremsstrahlung off the “projectile” p1.

Let us now compute in detail the final- and initial-state radiation diagrams
A and B shown in Fig. 1.3. First let us specify the kinematics. For the incoming
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1. L1: Origins of Small-x Evolution

particles we have the same kinematics as before:

pµ
1 =

[ m2

2p−
1
, p−

1 , 0⃗⊥

]µ

, (1.27a)

pµ
2 =

[
p+

2 ,
m2

2p+
2
, 0⃗⊥

]µ

, (1.27b)

while for the 3 final-state particles we have

(p1 − k − q)µ =
[ (k⃗⊥ + q⃗⊥)2 +m2

2(p−
1 − k− − q−)

, p−
1 − k− − q− , −k⃗⊥ − q⃗⊥

]µ

≈
[ (k⃗⊥ + q⃗⊥)2 +m2

2p−
1

, p−
1 , −k⃗⊥ − q⃗⊥

]µ

, (1.28a)

kµ =
[
k+ ,

k2
⊥

2k+ , k⃗⊥

]µ

, (1.28b)

(p2 + q)µ =
[
p+

2 + q+ ,
q2

⊥ +m2

2(p+
2 + q+)

, q⃗⊥

]µ

≈
[
p+

2 ,
q2

⊥ +m2

2p+
2

, q⃗⊥

]µ

. (1.28c)

This determines the exchanged momentum qµ by momentum conservation:

qµ =
[
q+ , q− , q⃗⊥

]µ

=
[
p+

1 − k+ − (p1 − k − q)+ , (p2 + q)− − p−
2 , q⃗⊥

]µ

≈
[

− k+ ,
q2

⊥
2p+

2
, q⃗⊥

]µ

. (1.29)

Altogether, this gives for the eikonal limit p+
2 = p−

1 → ∞,

pµ
1 ≈

[
0+ , p−

1 , 0⃗⊥

]µ

, (1.30a)

pµ
2 ≈

[
p+

2 , 0 , 0⃗⊥

]µ

, (1.30b)

kµ ≈
[
k+ ,

k2
⊥

2k+ , k⃗⊥

]µ

, (1.30c)

qµ ≈
[

− k+ ,
q2

⊥
2p+

2
, q⃗⊥

]µ

, (1.30d)

(p1 − k − q)µ ≈
[
0+ , p−

1 , −k⃗⊥ − q⃗⊥

]µ

, (1.30e)

(p2 + q)µ ≈
[
p+

2 , 0− , q⃗⊥

]µ

. (1.30f)
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1.2. Radiative Corrections: Soft QCD Bremsstrahlung

With the eikonal kinematics (1.30), it is straightforward to compute the
virtualities of the intermediate-state particles for diagrams A and B. The
exchanged gluon is the same for both diagrams:

q2 = 2q+q− − q2
⊥

= −k+

p+
2
q2

⊥ − q2
⊥

≈ −q2
⊥ , (1.31)

just as with the elastic scattering process we computed before. The intermediate
quark propagators are different for the two diagrams, giving

(p1 − q)2 = 2(p+
1 − q+)(p−

1 − q−) − (p⃗1⊥ − q⃗⊥)2

≈ 2(0+ + k+)(p−
1 − q2

⊥
2p+

2
) − q2

⊥

(p1 − q)2 ≈ 2k+p−
1 , (1.32a)

(p1 − k)2 = 2(p+
1 − k+)(p−

1 − k−) − (p⃗1⊥ − q⃗⊥)2

≈ 2(0+ − k+)(p−
1 − k2

⊥
2k+ ) − q2

⊥

≈ −2k+p−
1 . (1.32b)

Crucially, the virtualities of these two intermediate states are exactly opposite
in the high-energy limit, and this virtuality is small compared to the collision
energy s:

(p1 − q)2 ≈ −(p1 − k)2 ≈ 2k+p−
1 ≪ s . (1.33)

This shows that the kinematics of the two diagrams are identical, but
different by a sign accounting for the fact that the propagator is timelike for
diagram A but spacelike for diagram B.

Initial- vs. Final-State Radiation: Amplitudes

The evaluation of the amplitudes for diagrams A and B is now straightforward.
For diagram A in Feynman gauge we have

iMA = [ū′
1
(
ig/ϵ

∗
λ(ta)i′i′′

)( i(/p1 − /q)
(p1 − q)2

)(
igγµ(tb)i′′i

)
u1]

×

(
−igµνδbb′

q2

)
[ū′

2
(
igγν(tb

′
)j′j

)
u2]

= +ig3

q2
⊥ (2k+p−

1 )
(tatb)i′i(tb)j′j [ū′

1/ϵ
∗
λ(/p1 − /q)γµu1][ū′

2γ
µu2] . (1.34)
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1. L1: Origins of Small-x Evolution

Again utilizing the Gordon identity (1.8) in the eikonal limit, we write the
spinor product for the target as

[ū′
2γ

µu2] ≈ 2p+
2 δ

µ
+ δs2s′

2
. (1.35)

This sets µ = + in the spinor matrix element for the projectile (recall that
γ+ = γ−), and we can further eikonalize the spinor matrix element:

[ū′
1/ϵ

∗
λ(/p1 − /q)γ−u1] ≈ p−

1 [ū′
1/ϵ

∗
λγ

+γ−u1]
= p−

1 [ū′
1/ϵ

∗
λ{γ+, γ−}u1]

= 2p−
1 [ū′

1/ϵ
∗
λu1]

= 2p−
1 (ϵ∗λ)µ[ū′

1γ
µu1]

≈ 2p−
1 (ϵ∗λ)µ(2p−

1 δ
µ

− δs1s′
1
)

= (2p−
1 )2(ϵ∗λ)+δs1s′

1
(1.36)

where we have used the Dirac equation

(/p1 −m)u1 ≈ p−
1 γ

+u1 = 0
∴ γ+u1 = 0 (1.37)

for the incoming quark at eikonal accuracy. Substituting these results back into
(1.34) gives

iMA = +ig3

q2
⊥ (2k+p−

1 )
(tatb)i′i(tb)j′j

(
2p+

2 δs2s′
2

)(
(2p−

1 )2(ϵ∗λ)+δs1s′
1

)

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+ (tatb)i′i(tb)j′j δs1s′
1
δs2s′

2
. (1.38)

In a similar way, we can evaluate amplitude B in the eikonal approximation:

iMB = [ū′
1
(
igγµ(tb)i′i′′

)( i(/p1 − /k)
(p1 − k)2

)(
ig/ϵ

∗
λ(ta)i′′i

)
u1]

×

(
−igµνδbb′

q2

)
[ū′

2
(
igγν(tb

′
)j′j

)
u2]

= +ig3

q2
⊥ (−2k+p−

1 )
(tbta)i′i(tb)j′j [ū′

1γµ(/p1 − /k)/ϵ∗
λu1][ū′

2γ
µu2]

= +ig3

q2
⊥ (−2k+p−

1 )
(tbta)i′i(tb)j′j [ū′

1γ
−(/p1 − /k)/ϵ∗

λu1](2p+
2 δs2s′

2
)
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1.2. Radiative Corrections: Soft QCD Bremsstrahlung

= −ig3 2p−
1 p

+
2

q2
⊥

1
2k+p−

1
(tbta)i′i(tb)j′j δs2s′

2
[ū′

1γ
−γ+/ϵ

∗
λu1]

= −ig3 2s
q2

⊥

1
2k+p−

1
(tbta)i′i(tb)j′j δs2s′

2
[ū′

1/ϵ
∗
λu1]

iMB = −ig3 2s
q2

⊥

(ϵ∗λ)+

k+ (tbta)i′i(tb)j′j δs1s′
1
δs2s′

2
. (1.39)

Discussion

Comparing the final-state radiation diagram iMA from Eq. (1.38) with the
inital-state radiation diagram iMB , from Eq. (1.39), we make several interesting
observations:

• These two amplitudes are almost identical, owing to the eikonal
kinematics of the Regge scattering. The dependence on all kinematic
variables is the same.

• The amplitudes are proportional to 1/k+, and since k+ ≪ p+
2 is a soft

momentum scale, the amplitude to radiate a soft gluon is parametrically
large.

• The eikonal limit is in general spin-independent. This means we must
work harder and include sub-eikonal corrections if we want to describe
the behavior of spin asymmetries in Regge kinematics.

• The two amplitudes differ by a minus sign. This sign difference came from
Eq. (1.33), arising because the only kinematic difference between the two
amplitudes is that for diagram A, the propagator is timelike (k+ and p−

1
flowing in the same direction), while for diagram B, it is spacelike (k+

and p−
1 flowing in opposite directions).

• Aside from the minus sign, the only other difference between the two
amplitudes is the order of the two color rotations of the projectile
quark. For diagram A, the scattering occurs before the radiation, leading
to the combined color rotation (tatb)i′i. For diagram B, the radiation
vertex occurs first, leading to (tbta)i′i

• In the eikonal approximation, both amplitudes to radiate the gluon from
the projectile are proportional to the polarization vector (ϵ∗λ)+. This
means that if we strategically choose a gauge such that (ϵ∗λ)+ = 0
(the light-front gauge A+ = 0), then iMA = iMB = 0. This allows us
to suppress radiation from the projectile in this special gauge,
leaving only contributions from the other diagrams C, D, E. The same
is true for the target: choosing the light-front gauge A− = 0 suppresses

11



1. L1: Origins of Small-x Evolution

radiation from the target, resulting in iMC = iMD = 0. An appropriate
choice of gauge like this can drastically simplify the calculation.

• In a symmetric gauge like Feynman gauge, diagrams C and D, being
mirror images of A and B, can be trivially obtained from Eqs. (1.38) and
(1.39) by appropriate substitution of the momenta.

Understanding the general form of the bremsstrahlung amplitude in eikonal
kinematics leads to a profound difference between the radiation pattern produced
by QED and by QCD. Adding the two amplitudes together, we obtain

iMA + iMB = ig3 2s
q2

⊥

(ϵ∗λ)+

k+

(
(tatb)i′i − (tbta)i′i

)
(tb)j′j δs1s′

1
δs2s′

2

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+

[
ta, tb

]
i′i

(tb)j′j δs1s′
1
δs2s′

2

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+

(
ifabc(tc)i′i

)
(tb)j′j δs1s′

1
δs2s′

2

= −g3 fabc(tc)i′i(tb)j′j
2s
q2

⊥

(ϵ∗λ)+

k+ δs1s′
1
δs2s′

2
. (1.40)

The relative minus sign between the initial-state- and final-state-radiation
diagrams, together with the reversed order of the color rotations, has produced
a commutator of the color matrices. This changes the combined color structure
to something proportional to the structure constants fabc – exactly of the same
form as diagram E containing the triple-gluon vertex. Thus all of the diagrams
A-E can be combined into a single structure with an effective 3-gluon vertex,
known as the Lipatov vertex, as depicted in Fig. 1.2.

The difference here between QED and QCD could not be more pronounced.
In QCD, the initial-state radiation diagrams combine with the final-state
radiation diagrams in a systematic way, leading to parametrically large rate
of particle production at high energies. But in QED, without the presence of
the non-Abelian SU(Nc) generators, the amplitudes simply cancel instead,
and diagram E does not exist. For electron/electron scattering in QED at high
energies, no net photon radiation is produced, and the Regge limit is
trivial and uninteresting. This just corresponds to the familiar semi-classical
statement that an electron must accelerate to produce radiation, and since
s → ∞ with t fixed, the scattering angle goes to zero and the electrons do not
accelerate. But in QCD, the quarks have an internal color degree of freedom as
well as their kinematic variables. Unlike electrons, quarks can “accelerate” in
color space, leading to a proliferation of soft gluon radiation at mid rapidity.
Thus the high-energy Regge limit (small xF ) is uniquely sensitive to the
non-Abelian nature of QCD. And, moreover, any non-Abelian gauge
theory (not just QCD) will produce an abundance of soft gluon radiation –
directly as a consequence of the non-commutative vertex.

12



1.2. Radiative Corrections: Soft QCD Bremsstrahlung

Cross Section and Gluon Multiplicity

A complete calculation of all the diagrams in Fig. 1.2 leads to the full amplitude

iM = −g3 fabc(tc)i′i(tb)j′j
4s
q2

⊥
(ϵ∗λ)µ

(
kµ

⊥
k2

⊥
−

(k + q)µ
⊥

(k + q)2
⊥

)
δs1s′

1
δs2s′

2
. (1.41)

As promised, this diagram has the color structure of the 3-gluon vertex, along
with a characteristic transverse momentum dependence which defines the
Lipatov vertex. Squaring the amplitude and summing/averaging over the
spin and color quantum numbers yields

⟨|M|2⟩ = 8g3CF
s2

q2
⊥ k

2
⊥ (k + q)2

⊥
(1.42)

and to the differential cross section

dσ

d2k⊥ d2q⊥ dy
= 2α3

sCF

π2
1

q2
⊥ k

2
⊥ (k + q)2

⊥
. (1.43)

For the cross section differential only in the kinematics of the produced gluon,
we integrate over d2q⊥:

dσ

d2k⊥ dy
= 2α3

sCF

π2
1
k2

⊥

∫
d2q⊥

q2
⊥ (k + q)2

⊥

= 2α3
sCF

π2
1
k2

⊥

∫ 1

0
dα

∫
d2q⊥[

(q⃗⊥ + (1 − α)k⃗⊥)2 + α(1 − α)k2
⊥ +m2

]2

= 2α3
sCF

π2
1
k2

⊥

∫ 1

0
dα

π

α(1 − α)k2
⊥ +m2

≈ 4α3
sCF

π

m2

k4
⊥

ln k2
⊥
m2 , (1.44)

where we computed the integral using Feynman parameters and regulated the
IR divergence by adding a mass m2 as a regulator m2 → 0.

The cross section dσ
d2k⊥dy describes the distribution of produced gluons

as a function of their kinematics kµ, but it is difficult to interpret because
the numerator dσ has units of area. We can define a more natural gluon
multiplicity by normalizing the differential cross section dσ

d2k⊥dy by the elastic
scattering cross section (1.21):

dNg

d2k⊥ dy
≡ 1
σel

dσ

d2k⊥ dy
= 2αsNc

π2
m4

k4
⊥

ln k2
⊥
m2 . (1.45)
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1. L1: Origins of Small-x Evolution

Integrating the gluon multiplicity over d2kbot gives the multiplicity per unit
rapidity,

dNg

dy
≡
∫
d2k⊥

dNg

d2k⊥ dy

= 2αsNc

π2

∞∫
m2

d2k⊥
m4

k4
⊥

ln k2
⊥
m2

≈ 2αsNc

π2 , (1.46)

where we again cut off the k⊥ integral with a mass at the lower end to regulate
the IR divergence. One final integral over the rapidity y yields the total expected
number of gluons emitted:

Ng
tot ≡

Y2∫
Y1

dy
dNg

dy
= 2αsNc

π2 (Y2 − Y1) . (1.47)

The total rapidity interval ∆Y = Y2 − Y1 covered by the collision is determined
by the center-of-mass energy s available. Combining the incident-particle
kinematics (1.27) with the definition (1.24) of rapidity, we can write the rapidity
interval as a logarithm of s:

Y2 − Y1 = 1
2 ln p

+
2
p−

2
− 1

2 ln p
+
1
p−

1

= 1
2 ln p

−
1 p

+
2

p+
1 p

−
2

= 1
2 ln (s/2)

(m4/2s)
= ln s

m2 . (1.48)

Then the total expected number of gluons grows as a logarithm of the
center-of-mass energy s:

Ng
tot = 2αsNc

π2 ln s

m2 . (1.49)

Discussion

Here, we have computed both the elastic scattering qq → qq and gluon
production qq → qqg cross sections in the high-energy Regge limit. Summarizing
the results, we found that

σel = 4πα2
s

CF

2Nc

1
m2 , (1.50a)
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dσ

d2k⊥ dy
= 4α3

sCF

π

m2

k4
⊥

ln k2
⊥
m2 , (1.50b)

dNg

d2k⊥ dy
= 2αsNc

π2
m4

k4
⊥

ln k2
⊥
m2 , (1.50c)

dNg

dy
= 2αsNc

π2 , (1.50d)

Ng
tot = 2αsNc

π2 ln s

m2 . (1.50e)

These results were computed to eikonal accuracy in the kinematics, and using a
mass scale m2 in various places to cut off the IR divergences associated with
our choice of free quarks as the projectile / target.

Some features of these results are specific to the simple quark model
being computed. For instance, in this calculation, the transverse momentum
dependence of the gluon multiplicity is a pure 1/k4

⊥ power law (up to a slowly-
varying logarithm). This is characteristic of a pointlike source of gluons (the
colliding quarks) and will be modified if the projectile / target are replaced
with an extended object (for instance, a quark/antiquark dipole). But the
rapidity (in)dependence of the gluon multiplicity dNg/d2k⊥ dy section is
quite generic, following simply from the eikonal approximation and the form of
the quark/gluon vertex in QCD. In fact, we would have found the same scaling,

dNg

dy
∼ αs × (const) , Ng ∼ αs × ln s

m2 × (const)

if we had considered the eikonal scattering of gluons instead of quarks.
A robust prediction of QCD for any high-energy hadronic scattering

process is the emission of a spectrum of soft gluon radiation which is
uniform (boost-invariant) at mid-rapidity. This is exactly what is seen
experimentally from particle production (here: inclusive charged hadrons) at
mid-rapidity in high-energy hadronic collisions (Fig. 1.4). We find that QCD
produces an abundance of soft gluon radiation at high energies which
is boost-invariant (rapidity-independent) at leading power in the eikonal
expansion.

Even more profoundly, that constancy of the gluon spectrum with rapidity
sets up a dynamic competition between the parametrically small probability
to emit a gluon in perturbative QCD (αs ≪ 1) and the large phase space of
rapidity available to the gluon (∆Y = ln s/m2 ≫ 1). The expected number of
gluons is nominally computed in weak-coupling perturbation theory

Ng ∼ αs × ln s

m2 × (const) + O
(
α2

s

)
(1.51)

as an O (αs) NLO correction relative to the elastic scattering. As such, is a
parametrically small quantity: Ng ∼ αs ≪ 1 as long as the logarithm is of order
unity.

But when s is very large – not just “kinematically large”, s ≫ m2, but
exponentially large, ln s

m2 ≫ 1 – the dimensionless logarithm begins to
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1. L1: Origins of Small-x Evolution

Figure 1.4: A uniform distribution of hadrons at mid-rapidity measured by
the CMS Collaboration, in excellent agreement with our expectations from the
tree-level calculation in QCD.

compete with the expansion parameter αs of perturbation theory. When the
phase space is large enough to fully offset the the suppression in the coupling,

αs ln s

m2 ∼ O (1) ↔ s

m

2
∼ O

(
e+1/αs

)
, (1.52)

this large logarithm completely upends the standard perturbative power
counting in αs.

The NLO cross section σqqg
tot containing one soft gluon bremsstrahlung is

now of the same order as the LO elastic process, σqq
tot. And two sequential

emissions of appropriately soft bremsstrahlung will also be of the same
order as the LO process – and so on, for any number of soft gluon emissions.
The limit (1.52) describes a cascade of small-xF gluons, in which the large
logarithms must be resummed to all orders. This results in a massive
increase in the gluon density and in the abundance of particle production at
high energies (synonymous with small x). The summation of n = 0, 1, · · · ,∞
gluons essentially exponentiates the one-loop kernel:

Ng
tot ∼

∞∑
n=0

(
αs × ln s

m2 × (const)
)n

∼ exp
[
αs × ln s

m2 × (const)
]

∼
( s

m2

)αs×(const)
.

This resummation process, in which the cross section at high energies grows
as a power law in the energy, is sometimes referred to as Reggeization. The
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1.2. Radiative Corrections: Soft QCD Bremsstrahlung

differential equation which expresses that leading-logarithmic resummation of
soft gluon emission is known as the BFKL equation (Balitsky-Fadin-Kuraev-
Lipatov), and its prediction of rapidly growing gluon densities in hadronic
systems drives high-energy QCD toward the limit of nonlinear, high-density
physics. If high-energy QCD induces a high density of gluons, then nonlinear
multiple scattering at all orders will become important to characterize
the high-energy asymptotic behavior of the theory. The physics of coherent
multiple scattering on a dense QCD system is the essence of this high-
energy limit, resulting in the landmark prediction of gluon saturation.
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APPENDIX A

Background and Conventions

A.1 Review: Basics of QCD

Group Structure of SU(3)

Quantum Chromodynamics is the gauge theory of SU(3) color symmetry. The
gauge group SU(3) consists of the group of special, unitary, 3 × 3 matrices
which perform the color rotations among the 3 quark colors. The term “special”
indicates that the matrices have unit determinant, which is the condition
that excludes the unit matrix (“QCD photon”).

The 8 generators of SU(3) in QCD are written

ta = 1
2λ

a (A.1)

where λa are the Gell-Mann matrices

λ1 =

 1
1

 λ2 =

 −i
i

 λ3 =

1
−1


λ4 =

 1

1

 λ5 =

 −i

i

 λ6 =

 1
1


λ7 =

 −i
i

 λ8 = 1√
3

1
1

−2

 . (A.2)

In this fundamental representation of SU(3), the Gell-Mann matrices are these
explicit 3 × 3 matrices, with the particular components t3, t8 being diagonal.

The essential property of SU(3) is the Lie algebra of its generators, which
can be expressed through the commutator relation

[ta , tb] = ifabc tc , (A.3)
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where fabc are the totally antisymmetric structure constants

fabc 1 1
2 − 1

2
1
2

1
2

1
2 − 1

2

√
3

2

√
3

2
a 1 1 1 2 2 3 3 4 6
b 2 4 5 4 5 4 6 5 7
c 3 7 6 6 7 5 7 8 8

(A.4)

with fabc = −f bac = −facb and all other components of fabc equal to zero. The
generators also satisfy a trace-orthogonality relation,

tr[1] = Nc , (A.5a)
tr[ta] = 0 , (A.5b)

tr[tatb] = 1
2δ

ab , (A.5c)

and the sum of the squares of the generators is a special invariant of the group
called the quadratic Casimir element,

tata = CF 1 ≡
(
N2

c − 1
2Nc

)
1 . (A.6)

For real QCD with the gauge group SU(3), the group constants are Nc = 3
and CF = 4/3.

The structure constants fabc themselves provide the 8-dimensional adjoint
representation of SU(3) (which we denote here in capital letters),

(T a)bc ≡ −i fabc , (A.7)

which satisfies the Lie (commutator) algebra (A.3)

[T a , T b] = ifabc T c (A.8)

through the use of the Jacobi identity[
T a , [T b, T c]

]
+
[
T b , [T c, T a]

]
+
[
T c , [T a, T b]

]
= 0 . (A.9)

Just as the 3 × 3 fundamental representation of SU(3) describes the color
states of the quarks and how they transform, the 8 × 8 adjoint representation
describes the color states and interactions of the gluons. In a general SU(Nc)
gauge group, the fundamental representation has dimension Nc and the adjoint
representation has dimension (N2

c − 1).

The t’Hooft Large-Nc Limit

While for true QCD the number of quark colors is 3, the general gauge structure
of QCD is only minimally modified for the case of arbitrary number of quark
colors Nc. We have already benefited from the comparison of QCD (Nc = 3)
with the Pauli matrices of Nc = 2. In fact, the algebra of the general gauge
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group SU(Nc) becomes significantly simpler with clever usage of the number
of colors Nc. One particularly powerful usage is the t’Hooft large-Nc limit

αs → 0 , (A.10a)
Nc → ∞ , (A.10b)

αsNc = const ≪ 1 . (A.10c)

In this limit, the “S” of SU(Nc) essentially becomes irrelevant (reducing SU(Nc)
to U(Nc)), since the one omitted generator is negligible compared to the
N2

c − 1 ≈ N2
c generators retained as Nc → ∞. This can be clearly seen in the

form of the Fierz identity for SU(Nc)

(ta)i
j (ta)k

ℓ = 1
2δ

i
ℓ δ

k
j − 1

2Nc
δi

j δ
k

ℓ
Nc≫1

≈ 1
2δ

i
ℓ δ

k
j , (A.11)

where the subtraction term enforcing (ta)i
i = 0 drops out.

In the large-Nc limit, the number of gluons N2
c − 1 far exceeds the number

of quarks Nc, so this limit simplifies QCD to effectively contain only
gluons. For gluon-dominated phenomena like small-x gluon saturation, this
approximation is an especially powerful simplification. The simplified Fierz
identity (A.11) allows the adjoint color flow of gluons to be replaced with an
equivalent fundamental color flow, as if the gluon were being replaced by a
quark-antiquark pair1. Moreover, the Feynman diagrams which dominate the
large-Nc limit are always planar, meaning that (in a graph theory sense),
all the vertices and propagators can be laid out flat on a plane, without any
lines needing to cross “underneath” each other to construct the diagram. This
can lead to a tremendous simplification of the color structure and associated
operators for high-energy scattering in QCD, making the large-Nc limit highly
advantageous in QCD. As an approximation to QCD, corrections to the large-Nc

limit in real QCD often occurs at O
(
1/N2

c

)
for physical observables. One would

accordingly expect that the large-Nc limit is accurate at the level of 1/9 ∼ 10%;
however, for many observables, the large-Nc limit works even better in practice
than this naive estimate.

A.2 The QCD Lagrangian

Gauge Symmetry

Under a local SU(Nc) gauge transformation, the quark and gluon fields
transform as

ψ′ = eiϕata

ψ , (A.12a)

Aµa ′ = Aµa + 1
g

(∂µϕa) + fabcAµbϕc . (A.12b)

1Caution: this statement applies only to the color representation, not to any other
quantum numbers such as spin.
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Interestingly, for a non-Abelian gauge theory like QCD, both a shift of Aµa by
a scalar-polarized mode (∂µϕa) and a color rotation of Aµa correspond to a
gauge transformation.

The derivative operator which compensates for any local change of gauge is
the gauge-covariant derivative

Dµ ≡ ∂µ − igAa
µt

a , (A.13a)(
Dµψ

)′
= eiϕata

(
Dµψ

)
(A.13b)

From the covariant derivative, we can similarly construct a properly gauge-
covariant field-strength tensor F a

µν using the commutator:[
Dµ , Dν

]
=
[
∂µ − igAa

µt
a , ∂ν − igAb

νt
b
]

≡ −ig F c
µν t

c , (A.14)

where

F c
µν ≡ ∂µA

c
ν − ∂νA

c
µ + gfabcAa

µA
b
ν . (A.15)

Note that, in an Abelian theory like QED, the covariant derivative and field-
strength tensor are rather trivial:

Dµ
QED

≡ ∂µ + ieAµ , (A.16a)[
Dµ , Dν

]
= ie(∂µAν − ∂νAµ) = ie Fµν . (A.16b)

But in QCD, the field-strength tensor (A.15) contains more than just the free
kinetic part, linear in Aµ, which occurs in QCD. This is because, unlike in
QED, now the free part (∂µA

a
ν −∂νA

a
µ) is not gauge invariant (or even gauge

covariant). Instead, the “chromo-electric” and “chromo-magnetic” fields are
themselves not separately gauge invariant, since they can be changed by a color
rotation. Note that, while field-strength tensor F a

µν for a given color a is not
gauge invariant, its square (summed over colors) is:

F ′ a
µνF

′ µν a = F a
µν F

µν a . (A.17)

Lagrangian and Feynman Rules

From the appropriate SU(Nc)-covariant ingredients, the quark field ψ, the
covariant derivative Dµ, and the field-strength tensor F a

µν , we can immediately
write down the QCD Lagrangian,

LQCD = ψ̄(i /D −m)ψ − 1
4F

a
µνF

µν a

= ψ̄(i/∂ −m)ψ − 1
4(∂µA

a
ν − ∂νA

a
µ)(∂µAν a − ∂νAµ a)

+ gψ̄γµt
aψAµa − gfabc Ab

µA
c
ν(∂µAνa)
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igγµt
a

µ , a
gfa1a2a3[gµ1µ2(k1 − k2)

µ3
µ1 , a1

µ3 , a3µ2 , a2
µ1 , a1 µ2 , a2

µ3 , a3 µ4 , a4

−ig2[fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+gµ2µ3(k2 − k3)
µ1

+gµ3µ1(k3 − k1)
µ2]

+fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)]

Figure A.1: Feynman rules for the interaction vertices in QCD. These ingredients
give the contributions to any scattering amplitude iM.

− 1
4g

2fabcfab′c′
Ab

µA
c
νA

µ b′
Aν c′

. (A.18)

From the Lagrangian (A.18), we can readily compute the Feynman rules
shown in Fig. A.1. While the quark/gluon vertex is highly similar to the
equivalent QED electron/photon vertex up to a color factor, the 3-gluon and
4-gluon vertices are entirely new. These arise from the non-Abelian corrections
to the pure glue part − 1

4F
a
µνF

µν a. Note that the 3-gluon vertex is momentum
dependent, arising from its derivative coupling, while the 4-gluon vertex is
momentum independent. Both are proportional to the non-Abelian structure
constants fabc.

These new gluonic self-interactions have many profound consequences
for QCD, but none is more important than their role in the QCD vacuum
polarization shown in Fig. A.2. Because of the non-Abelian nature of QCD,
not only fermions (quarks) enter the virtual loops contributing to the vacuum
polarization; gluon loops enter as well. And the gluon loops compete with
the quark loops: while the quarks produce a positive contribution to the beta
function (as with electrons in QED), the gluons make a negative contribution
to the beta function:

βg = 1
3

g3

(4π)2 (2Nf − 11Nc) , (A.19)

where Nf is the number of quark flavors entering the loop and Nc is the number
of quark colors. For QCD, the gluons win, resulting in a beta function which
is negative.

This negative beta function is the hallmark of QCD, resulting in a running
coupling αs(Q2) which decreases with increasing momentum scale Q2 – the
opposite of an Abelian theory like QED. This negative beta function results in
both the phenomenon of asymptotic freedom (αs(Q2) → 0 as Q2 → ∞) as
well as confinement (αs(Q2) → ∞ as Q2 → 0). Unlike QED, which possesses
its Landau pole in the UV limit Q2 → ∞, the negative beta function of QCD
places its Landau pole in the IR regime Q2 → 0. This signifies the onset of
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Figure A.2: Effect of the non-Abelian vertices on the QCD running coupling.

the confinement phase transition at nonperturbative coupling in QCD in the
IR, in contrast to the electroweak phase transition of QED in the UV. The
other profound implication of asymptotic freedom is that QCD is a valid,
self-consistent theory up to *infinitely high* momentum scales. What
asymptotic freedom buys us is UV completeness: an essential property of any
candidate fundamental theory of nature, which is elegantly and automatically
satisfied by non-Abelian gauge theories like QCD.

A.3 Other Notation and Conventions

Light-Front Components

A four-vector pµ may be expressed in terms of light-front coordinates, which
are linear combinations of the timelike component and one spacelike component
(usually chosen to be the z-component). There are two light-front components,
p+ and p−, defined by

p± ≡ 1√
2

(p0 ± p3) . (A.20)

In terms of light-front components, four-vector products take the form

p · q = p+q− + p−q+ − p⃗⊥ · q⃗⊥ , (A.21)

and for an on-shell particle with given p+ and p⃗⊥, the on-shell condition fixes
the other light-front component to be

p2 = 2p+p− − p⃗ 2
⊥ = m2

∴ p− = p⃗ 2
⊥ +m2

2p+ . (A.22)

A particle moving at high energy along the +z axis with p0 ≈ p3 ≈ E therefore
has p+ ≈

√
2E → ∞ and p− ≈ (p⃗ 2

⊥ +m2)/(2
√

2E) → 0. The reverse is true for
a particle moving along the −z axis.
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We will denote vectors written in terms of their light-front components using
square brackets, and we will often emphasize which component is which by a
superscript. For instance, the momentum of an on-shell particle of mass m
moving along the z-axis may be written

pµ =
[
p+ , p− , p⃗⊥

]µ

=
[
p+ ,

p2
⊥ +m2

2p+ , p⃗⊥

]µ

→
[
p+ , 0− , p⃗⊥

]µ

, (A.23)

where the last line follows in the ultrarelativistic limit p+ → ∞. Equivalently,
we may use the on-shell condition to solve for p+ in terms of p−, which is
convenient for describing a particle moving along the −z axis at high energy:

pµ =
[
p+ , p− , p⃗⊥

]µ

=
[p2

⊥ +m2

2p− , p− , p⃗⊥

]µ

→
[
0+ , p− , p⃗⊥

]µ

, (A.24)

where the last line follows in the limit p− → ∞.
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