
M.Battaglieri - INFNAI-supported methods for Real-time data analysis1

M.Battaglieri (INFN)

AI-supported methods for
Real-time data analysis
Part II - AI/ML fundamentals

M.Battaglieri - INFNAI-supported methods for Real-time data analysis2

Part II
AI/ML fundamentals
• AI basics
• AI/ML algorithms
• Linear regression
• Minimization
• Extrapolation vs. interpolation
• Neural Nets
• An example: GAN to extract physics
• Autoencoder

Outline

M.Battaglieri - INFNAI-supported methods for Real-time data analysis3

Machine/Deep Learning

Typical problem:
• Data set with independent (Xi) and dependent (Yj) variables

• The model, function of variables Xi, and some parameters Pk

• The cost (loss) function to judge how the model performs on observed Z(Xi, Yi) varying parameters Pk

How it works:
• Split (randomly) the data set into 2 (independent) subsets training and test

(… better in 3: a small part of the test data set can be used for validation during trainig)

• The model learns from the training data set

• The performance of the model (changing Pk) is evaluated using the cost (loss) function

• When the training is concluded, apply the resulting parameters to the the test data set

Some caveats
• Fitting is not predicting (this is why we want to

use a validation set during training)

• Using a complex model may result in overfitting

• Better to use the simplest model

• Not different from a traditional fit …

Model selection
• No free lunch theorem: there is no universally best

model (All models are wrong, but some models are
useful. — George Box)

• Cross-validation to empirically select the best model for
the specific problem

Data science is not an ’exact science’, data scientist’s experience is priceless …

M.Battaglieri - INFNAI-supported methods for Real-time data analysis4

(Machine) learning algorithms

How do we learn from data?

• Machine learning systems process data sets made by examples (a vector)
• Examples are a collection of features (element of the vector)
• The data set is divided into batches
• Every run of the AI/ML algorithm over the training data set is called an epoch

Classification
• ML algorithm is a function f: Rn →{1,…, k}

Regression
• ML algorithm takes a vector x in Rn as input and

produces a scalar y in R as output f: Rn → R

• Performance: the accuracy of the model is evaluated by measuring the error rate. Values can be 0/1 or log(Probability)
• Unsupervised: the algorithm finds the underlying law by itself
• Supervised: an instructor teaches the algorithm what to do
• Reinforced learning: the algorithm may change in time interacting with the environment

An ML algorithm is a transformation that connects a set of features with an output variable(s)

In a HEP/NP scattering data set:
• example = data entries (events)
• features = 4-momentum components

In a HEP/NP scattering data set:
• separate signal from background

In a HEP/NP scattering data set:
• fitting a model to data

M.Battaglieri - INFNAI-supported methods for Real-time data analysis5

(Machine) learning algorithms

Linear regression
• The output is a linear function of the input
• w (weights) = parameters
• P (Performance) = Mean Square Errors
• The prediction matches the test value when the (Euclidean) distance

between the predicted and the test sample decreases to zero
• The ML algorithm should change w to minimize the MSE
• Minimization can be done analytically or iteratively
• A generalization of linear regression introduces an intercept (b = bias)

• The cost function can be defined in different ways: e.g. LASSO
(Least absolute shrinkage and selection operator)

• The distance is defined inc luding weight decay with a
hyperparameter λ to select small weights (if w is big, the cost
function gets bigger)

• This a form of regularisation of the model

M.Battaglieri - INFNAI-supported methods for Real-time data analysis6

Cost function minimization

The model is fit to training data by minimizing the cost function,
… but there are practical issues that complicate life:

• the cost function is not known at the ground truth
• it is defined in a multi-d space
• it may have multiple local minima
• in modern ML algorithm you may have millions of parameters

vt = ηt ∇θ E(θt)
θt+1 =θt -vt

ηt = learning rate

Different methods to find the minimum:
• Gradient Descent (GD)

• Stochastic Gradient Descent (SGD)

vt = ηt ∇θ EMiniBatch (θt)
θt+1 =θt -vt

learning rate decreases in
directions where the gradient is

large

chose randomly where
to start to avoid local

minima

• Gradient Descent with momentum
• Gradient Descent with second
momentum
• RMSprop
• ADAM

M.Battaglieri - INFNAI-supported methods for Real-time data analysis7

Fitting vs. predicting (interpolating vs. extrapolating)

We would like the ML algorithm learns the underlying law from (training) data and not simply reproduces the
(training) data set features (otherwise it will not be able to say anything about the test data set outside the training
range)

In-sample error vs. out-of-sample error (aka: How could ML possibly work???)
• We minimized the error in the training sample: what about the test?

Bias = difference between model and true

Variance = difference between in/out errors

• Assuming that training and test samples are identically distributed
• A more sophisticated (expressive) model can minimize the bias

• Variance can be reduced by increasing statistics (train/test sample)

• The model that provides the best explanation for the current dataset will probably not provide the best explanation for future datasets

• The discrepancy between Ein , Eout grows with the complexity of our data and of our model (increased model parameters, high dimensional space,
curse of dimensionality)

• For these reasons (and for complicated models), predicting and fitting can be different things. Need to pay attention to out-of-sample performance.

• Fitting existing data well is fundamentally different from making predictions about new data.

M.Battaglieri - INFNAI-supported methods for Real-time data analysis8

Fitting vs. predicting

• Traing interval [0,1.0]

• Test interval [0,1.2] (larger than the training
interval)

• Data sampled from

• f(x) = 2 x

• f(x) = 2 x -10 x5 + 15 x10

• If no noise, even with a small training set (Ntrain

= 10 < Ntest = 20) the model class that
generated the data provides the best fit and
also the best out-of-the sample prediction.

Signal only

M.Battaglieri - INFNAI-supported methods for Real-time data analysis9

Fitting vs. predicting

• Traing interval [0,1.0]

• Test interval [0,1.2] (larger than the training
interval)

• Data sampled from

• f(x) = 2 x

• f(x) = 2 x -10 x5 + 15 x10

• Noise=1, larger training set (Ntrain = 100, Ntest =
20)

• LINEAR provides better out-of-sample
prediction for POLY10 too

Signal + noise

M.Battaglieri - INFNAI-supported methods for Real-time data analysis10

Fitting vs. predicting

• Traing interval [0,1.0]

• Test interval [0,1.2] (larger than the training
interval)

• Data sampled from

• f(x) = 2 x

• f(x) = 2 x -10 x5 + 15 x10

• Noise=1, larger training set (Ntrain = 10000, Ntest

= 100)

• POLY10 provides the best fit and extrapolation
close to the training interval but degrades
quickly outside

Signal + noise with a larger training sample

Bias-variance tradeoff: with limited statistics, it is better to use
less expressive (simpler) models (larger bias smaller variance)

M.Battaglieri - INFNAI-supported methods for Real-time data analysis11

A side note …

Can AI help in recovering detectors effects?
All detectors introduce (at least) two effects in a measured data set:

• smearing: the detector has a finite resolution making DETECTED ≠ TRUE

• acceptance: every detector only covers a fraction (small/large) of the available phase space

Smearing (unfolding)

• Fixable!

• Train the ML algorithm with data passed through a proxy of the detector (GEANT-like) to
learn the distortions

• Use this knowledge to unfold detector distortion

Acceptance

• More difficult to recover: the cross section (Probability Density Function) can not be constrained by
general rules (other than being positive) since it reflects the underlying (a-priori unknown) physics

• No PDF extrapolation outside detector acceptance is possible (based on measured phase space)

• A possible approach is to impose conditions to the PDF via constraints on scattering aptitudes Ai
(parity conservation, analiticity, unitarity, …)

• Considering that:

XSec = ∑ |Ai|2 Ai = ∑ (Scattering amplitude for each possible process)

Ai are difficult to constrain supervising on XSec

Resolution of the CLAS detector learned by a GAN

M.Battaglieri - INFNAI-supported methods for Real-time data analysis12

Neural networks

• NNs are powerful supervised learning techniques
• Around the ’80s, it became widely used today thanks to the progress in hardware (CPU, GPU, and now FPGA)
• Several libraries are available to simplify custom implementation (PyTorch, Kera, TensorFlow, …)

• The basic unit of a neural network
is a stylized neuron i that takes d
input features x = (x1, x2, …, xd)
and produces a scalar output ai(x)

• The first layer is called the input
layer, the middle layers are called
the hidden layers, the final layer
is the output layer

• The exact function ai depends on
the type of non-linearity used in
the NN

• It can be decomposed into a linear
operation that weights the relative
importance of the various inputs
and a non-linear transformation
σi(z) activation function

M.Battaglieri - INFNAI-supported methods for Real-time data analysis13

Neural networks

• NNs are powerful supervised learning techniques
• Around since ’80s, it became widely used today thanks to the progress in hardware (CPU, GPU, and now FPGA)
• Several libraries are available to simplify custom implementation (PyTorch, Kerr, TensorFlow, …)

• The choice of the activation function is
critical

• NN is trained using a gradient descent
method (a derivative of neural function as a
function of weights w and bias b)

• Derivative of step-function can be an issue
(tanh and sigmoid were widely used in the
past)

• When w’s become large, some activation
functions saturate and the derivative tends
to zero (vanishing gradient).

• ReLU and ELU are not vanishing even for
large w’s (widely used today)

• The basic unit of a neural network
is a stylized neuron i that takes d
input features x = (x1, x2, …, xd)
and produces a scalar output ai(x)

• The first layer is called the input
layer, the middle layers are called
the hidden layers, the final layer
is the output layer

• The exact function ai depends on
the type of non-linearity used in
the NN

• It can be decomposed into a linear
operation that weights the relative
importance of the various inputs
and a non-linear transformation
σi(z) activation function

M.Battaglieri - INFNAI-supported methods for Real-time data analysis14

Neural networks in practice

• Chose the NN architecture
• Define your loss function
• Regularize it

• NN is more powerful than a simpler linear regression thanks to the inter-connections of weights and non-linearity introduced by the
activation function

• Universal approximation theorem: a neural network with a single hidden layer can approximate any continuous, multi-input/multi-output
function with arbitrary accuracy

• The more complicated a function, the more hidden units (and free parameters) are needed to approximate it
• Adding hidden layers also allows neural nets to learn more complex features from the data.
• Choosing the exact network architecture for a neural network remains an art
• Define the NN type (Perceptron, Feed Forward NN, Multilayer perceptron, Convolutional NN, Encoders, …) and details of the network
(how many nodes, how many layers, the activation function, …)

have fun!
• Prepare the data set
• Train the network
• Check results

M.Battaglieri - INFNAI-supported methods for Real-time data analysis15

Neural networks in practice

• Deep Learning (adding more hidden layers) nets are good for learning
non-linear functions (heavy processing tasks)

• Backpropagation is the key in the training procedure (how the NN
improves over time)

• Regularisation (e.g. dropout) contributes to outperforming on new data
(besides the training set)

• Implicit regularization using
Stochastic Gradient Descent:
initialization, hyperparameter
tuning, early stopping, .,..,

• Chose the NN architecture
• Define your loss function
• Regularize it

have fun!
• Prepare the data set
• Train the network
• Check results

M.Battaglieri - INFNAI-supported methods for Real-time data analysis16

The cross section in particle physics

• Traditional approach: particles (4-momenta) measured
into the detector, extract the relevant observables,
extract physics mechanisms

• Cross section preserves this information as
replacement for the original particle-by-particle
scattering information

• The cross section is related to the transition probability between an initial to a final state

• In case of scattering, cross sections provides information about the elementary interaction

• Cross section is expressed as squared sum of scattering amplitudes (complex functions)
depending on the kinematic Lorentz-invariant of the problem and embedding the interaction
properties

• It is derived by measuring the momentum distributions of reaction particle (at different CM
energy)

• Correlations between particles in the final state reflects the underlying dynamics

• Cross sections fully replaces the 4-mom data sample in a compact and efficient way

• Cross section is the starting point for any higher level physics analysis

M.Battaglieri - INFNAI-supported methods for Real-time data analysis17

Exclusive reactions: 2 → 2

J Lab-CLAS g6 ω photo
p r o d u c t i o n a t l a r g e
momentum transfer

 2-gluon exchange

 Correlations

quark exchange

• It worked (and still works!) well if
limited to channels with a single
variable

• Xsec, Polarization observables,
angular distribution, decay matrix, …

γ p → p ω

2 → 2 scattering (no polarisation)
- Initial state: known
- Final state: 2 x 3
- Parameters: (2 x 3) - 4 = 2
- Possible choice: -t and φ
- the physics depends only on one

variable (-t)

M. Battaglieri et al. (CLAS Collaboration) Phys. Rev. Lett. 90, 022002

M.Battaglieri - INFNAI-supported methods for Real-time data analysis18

Exclusive reactions: 2 → 3

• It does not work (in practice) when you have
several independent variables: multi-particle final
states (spectroscopy) or multi-variable correlations
(SIDIS)

• In the integration to reduce to 1-dim all
correlations are lost

2 → 3 scattering (no polarization)
- Initial state: known
- Final state: 3 x 3
- Parameters: (3 x 3) - 4 = 5 (Eγ fixed)
- Possible choice: M2ππ, M2pπ θπ, α, φ

AI may provide a new way to look
at data and extract observables

and physics interpretation
(on event by event base)

- Eγ = (3.0 - 3.8) GeV
γ p → p π+ π- exclusive reaction
- data set analyses so far γ p → p π+

(π-) + small contamination of γ p → p
π+ (more than a missing π-)

- complicated dynamic for the overlap
of (pπ) to form Δ baryon resonances
and (ππ) to form meson resonances

CLAS g11 2π photo production

M. Battaglieri et al. (CLAS Collaboration) Phys. Rev. Lett. 90, 022002

Credit: Y.Alanazi Awadh, , P..Ambrozewicz, G. Costantini A.Hiller Blin, E. Isupov, T. Jeske, Y.Li, L.Marsicano W. Menlnitchouk, V.Mokeev, N.Sato, A.Szczepaniak, T.Viducic

M.Battaglieri - INFNAI-supported methods for Real-time data analysis19

ML Event Generator GAN scheme

Detector proxy

• The colored boxes are built using NNs
• Discriminator is trained to output “real” for Nature samples
• Generator is trained to fool the discriminator
• The Generator can be used as data compression tool
• Typical size for the Generator: O(MB) - to be compared to NP/

HEP experiments data set O(GB/TB)
• Simple to distribute instead of events stored on tapes

M.Battaglieri - INFNAI-supported methods for Real-time data analysis20

2π photo production closure test

Distribution in 4D bins

Good agreement (± 1σ) for lab variables and in 4D bins

• UNF-GAN trained with RE-MC REC pseudodata (exp data proxy)
• DS-GAN used to unfold CLAS detector effects (within acceptance)

UNF-GAN

Unfolding GAN (UNF-GAN) that includes the DS-GAN, and training it with RE-MC REC pseudodata

5.Compare UNF-GAN GEN SYNT data to RE-MC GEN pseudodata

RE-MC GEN pseudodata vs. UNF-GAN SYN data

T.Alghamdi, M.Battaglieri, A.Golda, A. Hiller Blin, L.Marsicano, W.Melnitchouk, G.Montaña, E.Isupov, Y.Li,
V.Mokeev, A.Pilloni, N.Sato, A.Szczepaniak, T.Vittorini, Y.Alanazi to appear in ArXiv

M.Battaglieri - INFNAI-supported methods for Real-time data analysis21

Autoencoder

An autoencoder is a type of algorithm with the primary purpose of learning an "informative" representation of the data that can be used
for different applications by learning to reconstruct a set of input observations well enough
• Components: encoder, decoder (neural nets), and a latent feature representation
• Latent feature representations (learned) should be meaningful (often part of the autoencoder results)

Δ = difference between
output and input
< > = averaged on data set

Loss function

• To reduce latent features dimensionality use regularization to
enforce sparsity

θi = parameters
(NN weights)

• Another trick is to tie the weights of the encoder and decoder

• Training the AI means finding functions f and g that minimize the
Loss function

• Reducing the dim from n = dim(xi) to q = dim (hi) with q<n

• The learned representation is enough for the decoder to
reconstruct xi (part of the information is embedded in the
decoder weights)

• E.g. a hand-written digit. The input is the image of the
digit, the output is the reconstructed image, and the
latent features are the number of lines representing the
digit

learned representation of xi

M.Battaglieri - INFNAI-supported methods for Real-time data analysis22

Feed-Forward autoencoder

• Odd number of layers, symmetrical wrt the middle layer
• Middle layer has a reduced number of neurons q<n (bottleneck)
• Activation functions: ReLU (if xi >0) or sigmoids (if 0<xi <1)

• Data are normalised to stay within [0,1]
• Loss function:

• Reconstruction error (RE)

Autoencoder applications
• Dimensionality reduction: efficient, training with large amounts of data
• Classification: run a classifier on latent space, very fast, with limited accuracy loss
• Anomaly detection: outlier ID (when trained without or a negligible fraction)
• Denoising: input noisy image and output true image

M.Battaglieri - INFNAI-supported methods for Real-time data analysis

Denoising
works!

23

Feed-Forward autoencoder

• Goal: compress the image to the latent space and
decompress it

• Each image is 28x28 pixels = 784 features (q)
Autoencoder
• 3 layers with different latent dimension (8,16,64)
• ADAM optimizer
• Loss function: LCE and LMSE

• 30 epochs (batch size 256)

Example: hand-written figures

Dimensionality reduction works!

Autoencoder with convolutional layers

Robust wrt loss function choice

