Signatures of baryon junctions in semi-inclusive deep inelastic scattering

David Frenklakh

Wenliang (Bill) Li

Center for Nuclear Theory

Center for Frontiers in Nuclear Science

based on arXiv: 2312.15039 with D. Kharzeev

1st Workshop on Baryon dynamics from RHIC to EIC January 22, 2024

Main idea

Baryon stopping Hadronic collisions (RHIC, LHC)

Baryon number carrier physics

Main idea

Baryon junction

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

Gauge invariance

 $B(x_1, x_2, x_3, x) = \epsilon^{ijk} \left[P(x_1, x) q(x_1) \right]_i \left[P(x_2, x) q(x_2) \right]_j \left[P(x_3, x) q(x_3) \right]_k$

$$P(x_n, x) \equiv \mathcal{P} \exp\left(ig \int_{x_n}^x A_\mu dx^\mu\right)$$

Deep inelastic scattering (DIS)

 $\gamma^* p$ center of mass frame:

$$p_{\gamma^*} = (\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0^{\perp})$$

$$p_p = (\frac{\sqrt{s}}{2}, -\frac{\sqrt{s}}{2}, 0^{\perp})$$

 $p_B = (m_t \cosh y^*, m_t \sinh y^*, p_B^{\perp})$

Initial motivation: exclusive ω production

Significant fraction of events have the proton in the photon fragmentation region

Initial motivation: exclusive ω production

Significant fraction of events have the proton in the photon fragmentation region

Cannot separate the junction from valence quarks

Initial motivation: exclusive ω production

Significant fraction of events have the proton in the photon fragmentation region

Entire baryon is exchanged in the t-channel

Cannot separate the junction from valence guarks

Need a semi-inclusive process

Mueller-Kancheli theorem

A.H. Mueller, Phys. Rev. D 2 (1970) 2963. O.V. Kancheli, JETP Lett. 11 (1970) 397.

Optical theorem:

Generalized to semi-inclusive scattering: Study in Regge theory $\frac{d}{dq^3}\sum_{x} \left| \begin{array}{c} p_1 & q \\ p_2 & p_2 \end{array} \right|^2 \sim \text{Disk} \xrightarrow{p_1 & p_1 \\ -q \\ p_2 & p_2 \end{array}$

3 → 3 forward scattering in Regge limit

$$\mathcal{A}(s,t) \propto s^{\alpha(t)}, s \to \infty$$

$$s_1 = (p_1 + p_B)^2 = \sqrt{s} m_t e^{-y^*}$$
$$s_2 = (p_2 + p_B)^2 = \sqrt{s} m_t e^{y^*}$$

$$E_B \frac{d^3 \sigma}{dp_B^3} \propto s_1^{\alpha_P(0)-1} s_2^{\alpha_M(0)-1}$$

The largest $\alpha_M(0)$ is leading

Possible processes

Intercept estimates: G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Possible processes

Intercept estimates: G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

12

Rapidity distribution

$$E_B \frac{d^3 \sigma}{dp_B^3} \propto s_1^{\alpha_P(0)-1} s_2^{\alpha_M(0)-1}$$

$$s_1 = \sqrt{s} \ m_t \ e^{-y^*} \ , \ s_2 = \sqrt{s} \ m_t \ e^{y^*}$$

$$\alpha_P \approx 1, \alpha_M \approx \frac{1}{2}$$

$$E_B \frac{d^3 \sigma}{dp_B^3} \propto s^{-1/4} e^{-y^*/2}$$

$$F_{B} \frac{d^3 \sigma}{dp_B^3} \propto s^{-1/4} e^{-y^*/2}$$

Summary: observational consequences

Flavor content of forward baryons: all flavors

Rapidity dependence of forward baryon distribution

Large meson multiplicity from 3 fragmenting strings

14

Jefferson Lab

- Continuous e beam upto 12 GeV
- CEBAF Accelerator:
 - Injector
 - 2 x Superconducting linear accelerator
 - Bending Arcs
 - Duty Factor: 100%
- 4 x experimental Halls

 Hall A, B, C, and D
- Luminosity upto 10³⁶ cm⁻²s⁻¹

Jefferson Lab Experimental Halls at 12 GeV

Each Experimental Hall carry unique scientific objectives:

- Hall A: currently, not running SIDIS program.
- Hall B: CLAS 12 detector Stack. Low lumi. beam, large acceptance. Study multiple interactions simultaneously.
- Hall C: High Res. Spectrometers. High intensity beam. Study nucleon structure, LT separation.
- Hall D: photon beam. large acceptance, Study multiple interactions simultaneously.

- E12-09-017: Semi-Inclusive Pion and Kaon Production
 - Primary experiment observable:
 - $e + p \rightarrow e' + \pi^+ + X$

e'

- E12-09-017: Semi-Inclusive Pion and Kaon Production
 - Primary experiment observable: $e + p \rightarrow e' + \pi^+ + X$
 - Unexpected 2nd secondary experiment observable:

 $e + p \rightarrow e' + p + X$

• ep SIDIS data is 30% of the overall data set!

- Kinematic of the ep data set on tape
 - Q^2 Setting: 4.00, 4.75, 5.5 GeV²
 - z coverage: z < 0.8
 - $P_{h\perp}$ coverage: $P_{h\perp} < 0.6$
- Cross section extraction of the $P_{h\perp}$ dependence is under preparation

- Kinematic of the ep data set on tape
 - Q^2 Setting: 4.00, 4.75, 5.5 GeV²
 - z coverage: z < 0.8
 - $P_{h\perp}$ coverage: $P_{h\perp} < 0.6$
- Cross section extraction of the $P_{h\perp}$ dependence is under preparation

GlueX Experiment Hall D: Real Photon Scattering

- Near 4π coverage
- Capable of detecting final state: $\gamma + p \rightarrow [p, n, \Lambda, ...] + X$
- Baryon Multiplicity studies could be carried out.
 - **Λ-Λbar production is a potential candidate**

Conclusion Remarks

- Despite valence quark kinematics, JLab experiments accumulated data un-intentionally via SIDIS observable
- These data set might shed some light on supporting the existence of baryon junction, and inspire more studies in the near future