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H E RA HERA: Hadron-Elektron-Ringanlage
Hadron-Electron Ring Accelerator

* World’s only electron + proton collider

* Located at DESY in Hamburg, Germany
— Nominal energies of 27.6 GeV e-*on
920 GeV protons
— /s =319 GeV

Halle Nord (H1)
Hall North (H1)

Halle Ost (HERMES)
Hall East (HERMES)

* Ran from 1992-2007
— Delivered ~1 fb-1 of e+p collisions to the

two general purpose experiments, H1
and ZEUS

Halle West

Hall West —a— Elektronen / Positronen

Electrons / Positrons

Protonen
Protons

-

<ayw Photonenstrahlung

= Two fixed-target experiments
— Hermes, utilizing electron beam

— HERA-B, utilizing proton beam

Halle Siid (ZEUS)
Hall South (ZEU
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WHY HERA?

» Several aspects make the HERA experiments
an interesting place to mine for junctions

= Can reach low-x (and know you were there!)

— Valence quark contribution can be
controlled with kinematics

— Current & target fragmentation can be
easily separated

— Knowing event-by-event kinematics
enables studying observables as functions
of x, Q?, pt, y,n,etc...

» Photoproduction & DIS both available
— Photoproduction provides a “hadronic”
probe that carries no baryon number itself

7%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
| @ ENERGY U.S. Department of Energy laboratory
et managed by UChicago Argonne, LLC.
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WHY HERA?

= Beam species asymmetry Waste rock
— Baryon number enters from one side only
— No forward-backward ambiguity as in p+p

*

= Diffraction
— Know that baryon number was not

transported in diffractive collisions
— Can be used as a baseline

= Large detector acceptances
— Good reach in rapidity
» Especially in rapidity loss 8y
— Variable proton beam energy
« 920, 820, 575, 460 GeV data exist

*This feature exists also in the = + p/A collision
system, begs revisiting fixed-target data Argggﬂgo o 7




Baryon Stopping at HERA:

HERA STRATEGY Evidence for Gluonic Mechanism

Boris Kopeliovich"? and Bogdan Povh!

= An e+p collision has total baryon number of 1 P T ¢’ 5 ¢
— Reduces complexity and ambiguity of SR EE _Lg :
observables U R
y@ y@

= Likelihood of striking a valence quark (or di-
quark) and transportlng It to mldrapldlty IS nism of BN transfer in v — p interaction. The BN is produced with the
Sma” |n DIS at HERA rapidity of the sea quark (left)

Figure 1: Multiparticle production corresponding to the gluonic mecha-

— Ver'y h|gh-x events, cross section tmy The same as on the left, but for the valence quark mechanism. BN has
— HERA cross section dominated by low-x the rapicly of the valence q””"zzi“)'
= An observation of a non-zero baryon- 2 [ a1 R T
antibaryon asymmetry at low-x would be a § =h
strong indication in favor of the junction model
— Non-zero asymmetry in current region of
Breit frame would indicate the same W

“. % U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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HERA STRATEGY

= Expectation from A+A results is that at

HERA rapidities, asymmetry should be 1l
- v AGS E802 :
very small = e % 4 SPS NA49 .
— — Il 8 » = RHIC STAR il
Ypeam = /.9 for H1 & ZEUS L &%” Rl
— &y between beam and central ) 4 -~ RHIC STAR BES-|
F 01} .m — LHC ALICE =
detectors ~ 6-9 2 : . v
— A+Afit gives 1.1 g0.61%8y - I $ Accessible
(o) (o) o * i
— - 0. . - .
Expected asymmetry of 2% - 0.4% g Contrel Avh colisions ™+,
= However, A+A results generally integrate 001 & - Fit: 1.1 exp(-0.61 3y) l E
over x 1 2 3 4 5 6 718 9
— e+p offers much better control 8Y=Ypeam-Yem
— A 1% asymmetry could be built out of HERA y,

e.g. 0% at mid/high-x and 3% at low-x

%%, U.S. DEPARTMENT OF  Argonne National Laboratory is a
U.S. Department of Energy laboratory A
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H1 & ZEUS

= General-purpose hermetic detectors
— Focus on calorimetry & tracking
— PID only from dE/dx in tracking detectors

= L arge acceptance /i =~
— Unfortunately, tracking only well /=
understood in central regions (|n| < ~1.5) =

— Still gives good control over 8y

= H1 & ZEUS never published studies of
identified light hadrons

— Some pitfalls, need precise description of

backgrounds, detector material

= \Workhorse for baryon physics was PID via
displaced vertices
- A, KO




HERA DATA PRESERVATION

Table 1. Data preservation levels defined by the DPHEP study group [2].

= Preservation effort started in 2009

" H1

Miniscule investment (<1%) compared to
running experiments, resulting in ~10% of the
total physics results

members have been a leading force

in the DPHEP collaboration

"Level-4” preservation, retaining full potential
to do analyses

Keep as much low-level information and
documentation as possible, enabling
“outsiders” to do analyses such as dNg, /dn
Full analysis software updated in 2020 to
ROOT6, C++17

~1B events available

"%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
@ ENERGY U.S. Department of Energy laboratory 1 2
managed by UChicago Argonne, LLC

Level Preservation Model Use Case
Provide additional documentation Publication related info search
2 Preserve the data in a simplified format Outreach, simple training analyses
3 Preserve the analysis level software and Full scientific analyses,
data format based on the existing reconstruction

4 Preserve the simulation and reconstruction Retain the full potential of the
software as well as basic level data experimental data

= ZEUS falls between level 3 and 4

Data & Simulation NTuples
Pre-calibrated low level basic
objects (e.g. calorimeters
deposits, tracks)

Higher level composite objects
(e.g. jets, lepton candidates)
360M events

= HERMES less advanced than H1,
ZEUS but still in principle analyzable

» HERA-B data essentially inaccessible



Current understanding is that this analysis
H1 PRELIMINARY suffered from large hadron beam-gas

There is a much- backgrounds (p+A collisions at /s = 40 GeV)
discussed preliminary that induced the asymmetry
H1 result from 1999 of 02 0.2 [ 02
the proton-antiproton 4 b A ® | Az @
asymmetry o o New | ney
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Current understanding is that this analysis

H1 PRELIMINARY @ suffered fromgiirge hadron beam-gas

There is awauch- backgroup )+A collisions at /s = 40 GeV)
discussed pre ar that ind e asymmetry

H1 result from 0.2 ' - Q L
A%

the proton-antiproto
asymmety This measurement +
could be repeated

dE/dx [MIP]

0
0
p [GeV/c] p [GeV/c] cos(6) N c",i’s



Measurement of (anti)deuteron and

ZEUS P&D IN DIS (anti)proton production in DIS at HERA

= ZEUS measured antiproton/proton and

antideuteron/deuteron ratios in 2007 L 2T T
. & 5 (b) ° plp (ZEUS, @%>1GeV?) |
» Challenging measurement due to o S - 3d (ZEUS, P>1GeV?)
. . . . - | R S .
interactions with detector material H= - T v
— p+n—-dand N + N - d + m reactions 05 | } i =
* Had to rely on exltrapolgtlons of cross sect.lons T
from other materials using phenomenological p/M
models
= p/p ratio consistent with 1 /M | RO | RG@D
o ) 0.3-0.4 | 1.19 £ 0.01732 | 0.23 £ 0.0575:%¢
- Large error bars 0(10 /0)’ don't have the 0.4-0.5 | 0.90 +0.01%040 | 0.33 £ 0.10*0 ¢
precision to reach expected asymmetry of 7% 0.5 - 0.6 | 0.970.01%3}5 | 052+ 0217313
from junction model | 22:3: | ?Ziiggig(}g | 031i;)5+°“ |
u Ci/d ratIO Vel"y IOW, arou nd 03 Table 5: The measured p-to-p and d-to-d production ratios as a function of
. . pr/M. The last row of the table shows the data in the full measured phase space.
—_ Dlsag rees Strongly W|th Coalescence The statistical and systematic uncertainties are also listed.

predlctlon that — (g)z
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STRANGE BARYONS

ol Y T RN =l
= Extensive studies of A & A carried out £ E* = EE?EE&EE::? Sl EEs
by H1 & ZEUS ] s I S
— Minimal PID necessary due to
displaced vertex T e T
— Initially targeted toward tuning =Sro] S - b od S
strangeness suppression in MCs X1 1 &y o
= A an equal probe of baryon number i H A
— Junction model flavor agnostic | T R .
= Hadronic interactions with detector ) " " o ey
material effect p /7 ratio = Existing measurements of asymmetries
— Less the case for A, higher and cross sections vs. basically every
precision possible kinematic quantity you could want
— HERA detectors were fairly thick — In the lab frame and in the Breit frame

(separated current & target region)

%%, U.S. DEPARTMENT OF  Argonne National Laboratory is a
U.S. Department of Energy laboratory 1 6 A
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A M E AS U RE M E N T Hadronic Final Stote Kinemotics
PHASE SPACE

= H1: 49.9 pb"
— 2<Q2<100 GeV?2 -
— 01<y<0.6 102
= ZEUS: 121 pb' i
— Low Q2: 5<Q2< 25 GeV?2 2 |

b " £,=920 GeV

& [ e-wecv  y=inelasticity!!!
S

~

o

10%}
. 0.02<y<0.95

— High Q% Q2> 25 :
« 0.02<y<0.95 10 F .

— Photoproduction: Q2 < 1 .
* 0.2<yJB<O.85 1 L ‘ > 3

= Coverage in DIS: x > 5x1075 A7 W 7 1T L
10° 10° 10t 100 1w0? 1’

§77%, U.s. DEPARTMENT OF _ Argonne National Laboratory is a
8 ] ENERGY U.S. Department of Energy laboratory
izt managed by UChicago Argonne, LLC.




A MEASUREMENT RESULTS ot Frton S L

Boris Kopeliovich* and Bogdan Povhf

= Kopeliovich & Povh predict 3.5% asymmetry for DIS from BB ( 2 /)

. . A (x)_o-ann § =My
baryon junction model B 7P
in ZEUS
. . o/ : _ )
» ZEUS results consistent with 0% in all three systems T 048 e 5 018 prepre e
T . + F + F ]
— All asymmetry measurements statistics dominated 2 ol 1 2 wf E
= F 1 o s ]
02 Ty~ 025 T % oosff 4 % oo =
Z 02 e zEUS121pb" 4 Z o2 | 3 s e ¢ ]
o P 1 2 F QP>25GeV E o S = of- .
s 3 1 Z29FE  002<y<095 E g g ]
= o1E 4 = o[ 3 005 [ [ 005 [- 1
Z o005 F I 3 4 Z o005 | }é : E 1
= = 2 < - E 0.1 |- — 0.1 |- —
E 0 F ] E oF 3 F ] r ]
-0.0SE—I. = 005 |- 3 P N I B P N P D P ST
b E = E 1 15 2 25 -1 -0.5 0 0.5 1
o E - LEPTO(0.3) | o1k _ #(Gev) e
-0.15 2 === ARIADNE(0.3) -0.15 - E 2015
02 | vt ARIADNE(0.22) 02 | = = ]
P S T I P I P P P g ] o ZEUS 121 b
1 15 2 25 -1 -0.5 0 0.5 1 & I 1
PI;AB(GGV) rlL‘\B z.< 0.05 F [J Jet energy scale uncertainty
~ 025 g A, 025 pr— — of ~PYTHIA
E 0.2 ;_ _z E 0.2 z_ _i o005 E Photoproduction
< = = < = 3 g & ]
Z o015 | 4 Z o5 | 3 : ]
= o1 [ 4 X o1 [ 3 o i
= g i = g E : ]
Zl< 0.05 E_ _§ Zl< 0.05 £~ —§ _0.150—. . lolzl . (0|4. . Ion\ . ‘o[al . "1
5 0 - E E 0 :'- ’ ’ ’ ’ 0BS
-0.05 [ - -0.05 - = v
01 | = 01 [ = o s ) .
E E 3 3 e at high Q% A = 0.3 + 1.37)3%, compared to the ARIADNE (A, = 0.3) prediction of
-0.15 — -0.15 | — 0
E E 3 E 0.4 +0.2%;
02 = 02 F = . oo ) ‘ -
E L ol E 025 L L, ] e at low Q% A = 1.2+ 1.6757%, compared to the ARIADNE (A, = 0.3) prediction of
-0.25 -0. 07 .
p 1.0 £+ 0.2%;
10° 107 10° ’ »
X 02 (GeVz) e in photoproduction: A = —0.07 + 0.6710%, compared to the PYTHIA prediction of
Bj

18 0.6 +0.1%.




A MEASUREMENT RESULTS ot oo S ¢ L

Boris Kopeliovich* and Bogdan Povhf

= Kopeliovich & Povh predict 3.5% asymmetry for DIS from

H H a,nn (S = mN/x)
baryon junction model Ap(z) = i
m
ZEUS
» ZEUS results consistent with 0% in all three systems T 015 e 5 018 oy N
.. . + [ i *
— All asymmetry measurements statistics dominated Z of E E
~ 025 prrr T 1-20.25E.l....[,...,...,]....l. - z<
§< 02 e ZEUS121pb" §< 0.2 <
Z 015 | 4 =Z o5
= o1 [ 4 = o1
T = = 3 T >
Z o005 | I } 4 ZF oo | Wk E
Z o B 2 Z o : n ] “F 1
v-o.osE—I 3 005 [ 3 d t T N B S Y N N T T
3 E X more a a N 4 05 0 0.5 1
041 .- - LEPTO(0.3) e -0.1 P (Gev) nh®
o b — AmmoNEQy) | 08 available for
02 [ nin - ARIADNE(0.22) 02
Ee ool o by by L ] gl
-0.25 -0.25 ZEUS 121 pb
s e s . analysis! e
PT (GeV) ' ] [C] Jet energy scale uncertainty
~ 025 prrrT—TT T3 o 025 P O W T L —evma
E< 0.2 5— —; E< 0.2 : Photoproduction
Z 015 | — Z 015 1
= o1 f 4 = o1 1
< - = < ]
Z 005 <4 Z o005 ]
< 3 E < 1
5 o E E 5 0 ‘: 0BS
0.05 = -0.05 |-
-01 é_ _é 01 é_ E e at high Q% A = 0.3 £ 1.3703%, compared to the ARIADNE (), = 0.3) prediction of
-0.15 E_ _é -0.15 i_ _é 0.4+ 0.2%;
-02 E_. ] ol _g -02 g_‘ Ll L ._5 e at low Q% A = 1.2+ 1.6707%, compared to the ARIADNE (), = 0.3) prediction of
0.25 43 L3 0.25 = 10 +0.2%;
0 0 Xg; 0 02 (Gevz) e in photoproduction: A = —0.07 + 0.6710%, compared to the PyTHIA prediction of

19 0.6 +0.1%.




A MEASUREMENT RESULTS

= Kopeliovich & Povh predict 3.5% asymmetry for DIS from

baryon junction model _
ryon| 4 Ovis(ep — eAX) — oyis(ep — eAX)
A=

= H1 results consistent with zero asymmetry in low Q? DIS T uis(ep — eAX) + Oyis(ep — eAX)
— Studied both in the lab and the Breit frame

A — A Asymmetry A — A Asymmetry (Breit frame)
< F = F F F
< 02f H1 +H1 Data < 0.2f H1 +H1 Data < 025_ H1 +H1 Data < 025_ H1 +-H1 Data
ok ——— b L ol
!, 4 | E L | F . i ¢
OEI ++1—I+—T— 05 1 fﬁ_ T 0__+__+_ T 0:+_+_ i
o01f 01 0f o1f I
o2 g_a) ) o2 :_b) . ) 02 _a) target region 02 ;-b) target region
10 10? 10* 10° 102 05 1 15 2 25 3 35 4 0 5 10 15 20
Q’[GeV?] x pEr" [GeV] el
< M?_ H1 +H1 Data < °-2§' H1 +H1 Data < 0.22_ H1 +H1 Data < 02_ H1 +4H1 Data
0.1 01f 01f 01f
o}l \ — 051 _+_+—L—| J OE | 0:
Fl +++ 7 I hT_ f —T_ _+_ T = 3 |
0.1 0.1 — 0.1 0.1 +
02 é_c) . . . l . 0.2 ;_d) -0.2 i_c) current region 02 ;_d) current region
05 1 15 2 25 3 35 A s o 05 1 0 05 1 15 2 25 3 0 02 04 06 08 1
p‘l’ [GeV] n p$relt [GeV] Xg'e"




A MEASUREMENT RESULTS

= Kopeliovich & Povh predict 3.5% asymmetry for DIS from
baryon junction model

D

= H1 results consistent with zero asymmetry in low Q2 DIS

— Studied both in the lab and the Breit frame

An

_ Ovis(ep — eAX) — 0yis(ep — eAX)

" Oyis(ep — eAX) + 0yis(ep — eAX)

A — A Asy A — A Asymmetry (Breit frame)
<< 0.2 - H1 +H1 Data << 0.2 +H1 Data < o.z?— H1 +-H1 Data
01f ——— 0.1 . :
4+ ' | —l— | o # +
{ISIeaias ° 7 dat {T==
of 1 x more data ot
o2f, 02 available for azfy rgetrogin
' 10 0 analysis! N TR
Q? [GeVzl . xsreu
< o.z?— H1 +H1 Data < 02k (Ongomg) +H1 Data < 02_ H1 4 H1 Data
o.1} 0.1f 01f
0 + ++ —TL_+— { of 05
-o.1§— + 0af -0.1 +
o2 _c) . . . 02 current region 02 ;—d) current region
05 1 15 2 25 3 35 05 05 05 1 15 2z 25 3 0 o0z 04 06 o8 1

p, [GeV]

n p2ret [GeV]
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A MEASUREMENT RESULTS

= Many more results contained in these papers
— Notably baryon-to-meson ratios Measurement of K3, A and A production

— Encourage you to check them out! at HERA

s

"E.: 'Ei n: ||||| 2EUs ZEUS

;: ? P ey 1 ¥ 2o

< < N ] ZEUS Collaboration
B N
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3] I 1 detenergy scale uncertainty
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2
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% 7::::&;:::: % ; ep — e A X (Breit frame) Z o ?M »
S etz |3 R —— T ——— H H
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= T 3 &
03 X 3 4 g '} X ¥ sl L]
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* é s ki .
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;n.s— ; Y § [m P ° ) H
£ £ H — cou (,09) 8 s H
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:° 3 : : .
} : “‘unique” phenomena observed
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BONUS: TEVATRON = Asymmetry observed in production

= Not within the purview of my talk, but some very of A, A

. : — Interpreted as being consistent
important data exist from the Tevatron with strange quark coalescing with

= Similarly asymmetric collision system, with baryon di-quark remnant
number of +1 and -1 in the beams
— Measured directional asymmetries of single, double, and
triple strange baryons
arxiv.org/pdf/1605.03513.pdf ~ FeRMILABPUB16165

arxiv.org/pdf/1511.05113.pdf Fermilab-Pub-15-496-E

Measurement of the forward-backward asymmetries in the production of Z and

Measurement of the forward-backward asymmetry of A and A production in pj Q) baryons in pp collisions
collisions
]
) 1 = 0.05 5
< 004 () D@, 104 fb & ) DO, 104 fb a 0.1
2.0 <py <4.0 GeV = b
1 o | =< . DOG,104 1"
0.02 + 1 I , 10.

=)

‘++ 005 05 1 15 k 0.05 _
2 & 5w DO, 10.4 b [
Iyl ok
z 0.01 o %—P I
= \ + 4.0<p,; <60 Gev
s s -0.05 |-

0
-0.01 | L £ 0.08 © DO, 10.4 b
(b) Dﬂ 104fb Pr 5ocv
-0.02 0 -0.1 | I 1
8 o ‘F + 0 05 1 15 2
-0.08) ) Iyl
FIG. 8  Asymmetries (a) Arp = Afp and (b) Ans = M
Ans — Ans(Ks) of A and A with pr > 2.0 GeV, as functions FIG. 7: _Asymmetry Apy = 4rn as a fnction of b o0 FIG. 9:  Asymmetry App as a function of |y| for events pp —
of |y|, for the data sample pp — J/¥A(A)X. Uncertainties PP = p=7 X events with (a) 2.0 SRr b0 GeV, (b) 40 < G. 9 Y Y AFB |y| pp

» < 6.0 GeV, and (c) pr > 6.0 GeV. The uncertainties + inti iati
are statistical. pr < 6.0 GeV, and (c) pr > e ucertainties are 1 O)F X for pp > 2 GeV. The uncertainties are statistical.



http://arxiv.org/pdf/1605.03513.pdf
http://arxiv.org/pdf/1511.05113.pdf

PUTTING IT ALL TOGETHER: A RESULTS

= H1 & ZEUS measure no statistically significant
asymmetry in DIS or photoproduction with few

% uncertainties

0.1F

0.2F

0.15

(N,-N7)/ (N,+N;)

-0.05 [
01 F
-0.15
0.2 [
-025 Bl b i

0.2f
0.1F

4-H1 Data

J
1

=

02

01
0.05 F

025 T

Q%> 25 GeV?
0.02 <y <0.95

In agreement with MC
predictions, but not

precise enough to rule
out a 3.5% asymmetry
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EH1 & ZEUS

0 ALICE, pp, Vs=7 TeV

» ALICE, pp, Vs=2.76 TeV
© ALICE, pp, Vs=0.9 TeV
A ATLAS, pp, Vs=7 TeV

A ATLAS, pp, vs=0.9 TeV
* DO, pp, Vs=1.96 TeV

© STAR, pp, Vs=0.2 TeV

0 LHCb, pp, Vs=7 Te\

® LHCb, pp, vs=0.9 TeV

ES8, p Be, vs=0.024 TeV
* ES8, p Pb, Vs=0.024 TeV

1 A " 1

10 15
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H ERA-B V! production in p+A collisions at /s = 41.6 GeV l l

L o A EE G0 wkt KK KA Pl Ky o AR Sh
3 x10 - - —
p— [ —
| - AN EZEIZ QIQ
2 : N
© F oA YT
m L
HERA-B =
oL Vs = 130 GeV sor— Vs = 41.6 GeV
: * STAR o L
o PHENIX *
: s " s TB—
A
2 ——  Model re-fit with all data +—’_ +_'_ @i_
10 T=176 MeV, p, =41 MeV * *
N -l——i—
Figure 5: The anti-particle to particle ratio measured at HERA-B HERA-B results agree with STAR

L[] Target LELC [ (/s =130 vs. 41.6 GeV)
0.51£0.05 0.52£0.05 0.470.05 No significant A-dependence

ne National Laboratory is a
nt of Energy laboratory 25 A
ey A rgonne
NATIONAL LABORATORY




= Fixed target with 27.6 GeV electron beam H ERM ES %] W
Qmes

— Similar kinematics to JLab
— \s=7.2GeV

= Substantial raw yield of baryons to anti-baryons - oo asEowr aomio
— Expected from phase space, butcan'tdraw |- e o g gme
quantitative conclusions since yields are ;. sweer 0w oo om s
uncorrected } | —
S s 2.,
= , . g
B e R
s [ 4 Zg
Q ! | :
> : 2 2 6
@ 20 - ' ;
a I E -.:.-E 4 ..o o.o!iEEE
YL e | .
r epe® : 2|
% 0.2 0.4 0.6 0.8 0? , ,
y 4 0.2 0.4 0.6

Figure 18. Ratio of raw proton to antiproton yields at HERMES as a function of z. The bin
boundaries for the semi-inclusive DIS range are marked by dashed lines. The ratio exhibits a

function of ¢ = (EA + p.a)/(EB + pB), which represents the light cone

clear rise towards very low z, which might indicate the onset of significant target-fragmentation momentum fraction of the beam positron carried by the outgoing Aor A.

contributions, excluded in the data sample used by the minimum-z requirement of 0.2. 6 Argon ne °
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FUTURE PROSPECTS

» Data of H1, ZEUS, and HERMES is preserved and available for analysis thanks
to significant investment from DESY
— Anyone can join the collaborations and have access to the data!

» Promising directions for future analyses:
— Repeat proton/antiproton asymmetry measurement with better understanding
of detectors and backgrounds

— Strange baryons in diffractive DIS
» Use as a baseline for non-diffractive DIS measurements

— Proton energy scan data
» Reach smaller beam rapidities

— Ultilize the whole HERA dataset!
» Current H1 & ZEUS baryon publications use only ~1/4 of the whole dataset
 Higher statistics to access e.g =%, where diquark cannot be responsible
* For asymmetry measurements where statistical uncertainty dominates,

substantial improvements possible!
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CONCLUSION

= e+p and y+p collisions are promising avenues
to search for baryon junctions

» There are a surprising number of relevant
published results on baryon production
mechanisms from HERA

— With more on the way!
— HERA data very easy to work with
 Nice projects for students pre-EIC

= Existing & upcoming HERA measurements
nicely set the stage for the EIC!
— EIC detectors, statistics, beam flexibility
will make it the ultimate tool for these
studies
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The amount of the sea BB pairs stored in the photon fluctuation cancels in the relative

asymmetry (14), and we arrive at a very simple expression for the baryon asymmetry

Ap(z) = Zann( =hpm?v/w) , 1s)

0;

which is very important for further applications. Here azf is the inelastic cross section for
the dominant hadronic fluctuation of the photon at s = m% /z. It is the p-meson in the case
of a real photon, so we will use aff ~ 20 mb. We do not expect any strong Q*-dependence
of the baryon asymmetry, despite the fact that the photoabsorption cross section for highly
virtual photons decreases as 1/Q?. This may be interpreted as a suppression ~ 1/Q?* of
interaction of small-size, oc 1/Q?, fluctuations of the photon. At the same time the baryon-
antibaryon component of these fluctuations has to have a small transverse separation as
well. Thus the annihilation cross section acquires the same suppression factor 1/Q?.

In order to proceed further with the evaluation of the baryon asymmetry (15) one needs to

BB

ann

know the baryon-antibaryon annihilation cross section o> at high energies. As mentioned
in the introduction, the asymptotic behaviour of the annihilation cross section was studied in
nonperturbative [17] and perturbative [14, 16] QCD approaches, and also analysing data on
multiplicity distribution in pp and pp interactions [15, 16]. Using so different ideas all these

approaches arrive at the same conclusion: the annihilation cross section at high energies is

about 1 — 2 mb and nearly energy-independent.
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Figure 4: Gluonic mechanism of the proton BN flow to the central rapidity
region (a) and to the photon fragmentation region (b). The dashed lines

show the trajectory of the string junction
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