

Opportunities at EIC for testing baryon number carrier

Niseem Magdy

<u>niseemm@gmail.com</u> Inspire-hep: <u>1305036</u> ORCID: <u>0000-0002-6458-6552</u>

N.Magdy, et al, Opportunities at EIC for testing baryon number carrier, in preparation

This is an assumption

- $\checkmark \pm \frac{1}{3}B$ to each quark and antiquark cannot be inferred from QCD's first principles for baryons!
- ✓ Valence quarks carry most of the momentum and are contracted into thin "pancakes" at high energy.
- ✓ Quarks have less time to interact due to contracted longitudinal length

The string junction?

Motivation

- \checkmark Non-perturbative configuration of gluons represented by a locally gauge-invariant state vector.
- \checkmark Carries lower momentum and is less contracted

Baryon number: carried by the valence quarks?

- \checkmark Made of low-x gluons and has more time to interact with other partons
- $\checkmark\,$ Enhanced baryon transport to mid-rapidity

Has neither of these scenarios been verified experimentally?

Motivation

Several methods are suggested to test the hypothesis:

• The photon excepted has almost zero virtua \mathbf{ST} • Probes the nucleus at low-x

Chun Yuen Tsang (QM 2023)

Motivation

Several methods are suggested to test the hypothesis:

- Net-Baryon vs. Net-Electric charge in Isobar collisions
 The ratio B/
 - Valence quarks carry B and Q if $(B/\Delta Q^*\Delta Z/A) = 1$
 - Junction carry B (i.e., B is enhanced) if $B/\Delta Q^* \Delta Z/A > 1$

Motivation

Several methods are suggested to test the hypothesis:

- → Net-Proton differences between $\mu + p$ and $\mu + d$ ✓ EMC, minor (if any) difference
 - \checkmark Diquark Lund model shows a 20% difference

At RHIC:

> RHIC nuclear energy is at a sweet spot but has limited acceptance in rapidity, Q² and x

At EIC:

Suitable energy range, good acceptance in rapidity (extended from 2.5 to 6.0) Q² and x
 Low-p_T PID is needed to study the charge and baryon transports

Can EIC answer such a question?

The BeAGLE Model

The BeAGLE model:

Wan Chang et al., PRD 106, 012007 (2022)

The BeAGLE model:

 $d \equiv \int dz \rho / \rho_0$

Wan Chang et al., PRD 106, 012007 (2022)

A hybrid model consisting of DPMJet and PYTHIA with nPDF EPS09.

Nuclear geometry by DPMJet and nPDF provided by EPS09.

Parton level interaction and jet fragmentation completed in PYTHIA.

Nuclear evaporation (gamma dexcitation/nuclear fission/fermi break up) treated by DPMJet

Energy loss effect from routine by Salgado&Wiedemann to simulate the nuclear fragmentation effect in cold nuclear matter The BeAGLE model:

 $d \equiv \int dz \rho / \rho_0$

The $dN/dy|_{Net-p}$

If the junction hypothesis is true:

- ➢ Interact with a junction in the target nucleus
- Enhanced creation of mid-rapidity baryons
 - ✓ Junction interaction time > quark interaction time
 - $\checkmark\,$ More baryons are stopped in the junction picture
- Regge theory prediction:

$$\checkmark \frac{dN}{dy} \propto e^{\alpha_B (y - y_{beam})}$$

✓ α_B is related to Regge intercept of junctions ($\alpha_B \sim 0.5$)

 α_B from PYTHIA is larger than the prediction for the junction expectation

99 is LO DIS

The $dN/dy|_{Net-p}$

If the junction hypothesis is true:

- Interact with a junction in the target nucleus
- Enhanced creation of mid-rapidity baryons
 - ✓ Junction interaction time > quark interaction time
 - $\checkmark\,$ More baryons are stopped in the junction picture
- Regge theory prediction:

$$\checkmark \frac{dN}{dy} \propto e^{\alpha_B (y - y_{beam})}$$

✓ α_B is related to Regge intercept of junctions ($\alpha_B \sim 0.5$)

Isobaric ratio

- Net-Baryon vs. Net-Electric charge in Isobar collisions
 - ✓ The ratio $B/\Delta Q^*\Delta Z/A$ can be used to differentiate different carriers
 - Valence quarks carry B and Q if $(B/\Delta Q^*\Delta Z/A) \le 1$
 - Junction carry B (i.e., B is enhanced) if $B/\Delta Q^* \Delta Z/A > 1$
 - R(Isobar) shows dependence on the BeAGLE processes

BeAGLE shows value consistent with the quark's scenario

Isobaric ratio

- Net-Baryon vs. Net-Electric charge in Isobar collisions
 - ✓ The ratio $B/\Delta Q^*\Delta Z/A$ can be used to differentiate different carriers
 - Valence quarks carry B and Q if $(B/\Delta Q^*\Delta Z/A) = 1$

BeAGL e+Ru(Zr) 10.0×40.0 (GeV Junction carry B (i.e., $\mathbf{\tilde{B}}_{x_{B} \leq 1.0 (GeV/c)^{2}}^{Q^{2} \leq 1.0 (GeV/c)^{2}}$ if • All Hard-collisions $B/\Delta Q * \Delta Z/A > 1$ Evaporation Θ 1.5 INC M R(Isobar) is independent of $Q^{\frac{1}{2}}$ \mathbf{z} , $\chi_{\mathbf{D}}$ Ru(Zr)+Ru(Zr) 200 (GeV Trento 200 GeV BeAGLE shows value consistent a $\langle N_{part} \rangle$ quark's scenario

≻Net-Proton of $\mu(e) + p(d)$

Within uncertainty, EMC measurements show minor differences between $\mu + p$ and $\mu + d$ Diquark Lund model shows a ~20% difference

BeAGLE shows value consistent with the Diquark Lund model Can EIC do better?

> Net-Proton of $\mu(e) + p(d)$

The $p_T vs \eta$ selections

 $e + p \ 10 \times 28 \ GeV$ $e + p \ 280 \times 0 \ GeV$ 10⁵ Entries 7.755462e+07 1.248115e+08 Entries 4.359 Mean x Mean x -1.97 Mean y 0.3785 Mean y 0.4967 p 1.155 p10⁴ Std Dev x 1.39 Std Dev x 10⁴ Std Dev y 0.3747 0.2076 Std Dev v $p_T[GeV]$ $p_T[GeV]$ 10³ 10³ 10² 10² 10 10 20 -15 -10 -5 0 5 10 15 20 -10 10 15 20 -15 -5 0 5 $e + p \ 10 \times 28 \ GeV$ $e + p \ 280 \times 0 GeV$ Eta_pT_Q2_1_0 Eta_pT_Q2_1_0 Entries 1.799092e+07 7615008 Entries Mean x -3.649 Mean x 1.368 10³ \overline{p} \overline{p} 3.5 Mean y 0.7047 Mean y 0.4394 Std Dev x 1.096 10³ 2.018 Std Dev x Std Dev y 0.4777 $p_T[GeV]$ Std Dev y 0.2425 $p_T[GeV$ 10² 10² 1.5 10 10 0.5 -20 -10 $\overline{\eta}$ 10 -15 -5 5 15 20 0 _20 η° -10 -5 5 10 15 20 -15

Eta_pT_Q2_0_0

Can EIC do better?

Eta_pT_Q2_0_0

> Net-Proton of $\mu(e) + p(d)$ The ratio of net proton [e+p/e+d]

Can EIC do better?

Conclusions

We investigated the ability to use the EIC to study baryon junctions in e+A and the isobar collisions:

- The net-baryon yield slopes from PYTHIA and BeAGLE simulations are much steeper than expected from the baryon junction picture
- The isobaric ratios in BeAGLE are shown to be less than 1.0
 Independent of x_B
 - ✓ Independent of Q^2
- ≻ Net-Proton of $\mu(e) + p(d)$

✓ BeAGLE shows value consistent with the Diquark Lund model

Consistent with the quark's scenario.

Thank You