

LIPEI DU McGILL U. & LBNL

BARYON STOPPING: NUCLEON DECELERATION VS STRING JUNCTION BREAKING

1ST WORKSHOP ON BARYON DYNAMICS FROM RHIC TO EIC

CENTER FOR FRONTIERS IN NUCLEAR SCIENCE, STONY BROOK UNIVERSITY

JANUARY 24, 2024

BARYON RAPIDITY LOSS

F. Videbaek, Nucl. Phys. A 830 (2009) 43C; BRAHMS, Phys. Lett. B677, 267-271 (2009)

Baryon rapidity loss

$$\delta y = y_{\rm b} - \frac{2}{N_{\rm part}} \int_0^{y_{\rm b}} y \frac{dN}{dy} dy$$

BARYON STOPPING & ENERGY DEPOSITION

Lipei Du, arXiv: 2401.00596

INITIAL BARYON "STOPPING"

Baryons get distributed in rapidity by deceleration of the incoming nucleons

largely different energy loss

Kharzeev, PLB 378, 238 (1996); Sjostrand & Skands, NPB 659, 243 (2003)

Baryons get distributed in rapidity through string junction breaking

"Baryon deceleration" and "string junction breaking" should correspond to

J. D. Brandenburg, N. Lewis, P. Tribedy, and Z. Xu, arXiv:2205.05685

RAPIDITY-DEPENDENT NET-BARYON YIELDS

- Data at 130 GeV also fall on the universal curve
- The fitted curve can be used to reconstruct the rapidity density of net protons

Lipei Du, arXiv: 2401.00596

ENERGY DEPOSITION

Number of participants vs. total net baryon charge:

$$N^{B-\bar{B}} \stackrel{?}{=} N_{\text{part}}$$

The energy carried by incoming participant nucleons

$$E_{\rm part} = N_{\rm part} \sqrt{s_{\rm NN}} / 2$$

Total energy deposited in the fireball

$$E_{\rm hydro} = \int d^3 \Sigma_{\mu} T^{\mu t}(\boldsymbol{x}_{\perp}, \eta_s)$$

How are the energies related

$$E_{\rm hydro} \stackrel{?}{=} E_{\rm part}$$

$v_1(y)$ **CONSTRAINTS ON BARYON STOPPING**

LD, C. Shen, S. Jeon & C. Gale, PRC 108 (2023) L041901

From the nucleon deceleration picture, the baryon density profile gets two peaks, naturally giving the double-humped net proton yields in rapidity.

From the nucleon deceleration picture, the baryon density profile gets two peaks, naturally giving the double-humped net proton yields in rapidity.

From the nucleon deceleration picture, the baryon density profile gets two peaks, naturally giving the double-humped net proton yields in rapidity.

G. Denicol et al, PRC 98, 034916 (2018); LD, H. Gao, S. Jeon & C. Gale, arXiv:2302.13852

DIRECTED FLOW $v_1(y)$ **OF PROTONS**

- $v_1(y)$ of baryons is mainly driven by the asymmetric distribution of baryon density with respect to beam axis + transverse expansion;
- The widely used baryon-stopping picture results in $v_1(y)$ strongly overshooting the experimental measurements for protons at all beam energies.

A rapidity-independent "plateau" component in initial baryon profile & tilted baryon peaks describing the varying baryon stopping in the transverse plane

String junction: Kharzeev, PLB 378, 238 (1996); Lund string model

$dN^{p-\bar{p}}/dy$ **AND** $v_1(y)$ **OF PROTONS**

- simultaneously, the plateau is favored;

To explain the rapidity distributions of net proton yields and baryons' directed flows

It helps to reduce baryons' $v_1(y)$ while giving enough net proton yields around midrapidity.

11

$dN^{p-\bar{p}}/dy$ **AND** $v_1(y)$ **OF PROTONS**

- simultaneously, the plateau is favored;

11

To explain the rapidity distributions of net proton yields and baryons' directed flows

It helps to reduce baryons' $v_1(y)$ while giving enough net proton yields around midrapidity.

DIRECTED FLOW OF BARYONS AT 200 AND 62.4 GEV

12

THERMAL DILEPTON AT $\mu_B \neq 0$

J. Churchill, LD, C. Gale, G. Jackson & S. Jeon, arXiv: 2311.06675, arXiv: 2311.06951

THERMAL DILEPTON PRODUCTION

- Baryons: both quarks and string junctions could be the possible source
- Dileptons and photons production: quarks and anti-quarks are needed
- Electromagnetic probes of quarks and anti-quarks
 - > μ_B -dependent emission rates assume $\mu_B = 3\mu_q$ (quarks carry baryon number)

THERMAL DILEPTON PRODUCTION

Data: STAR, PRL 113 (2014) 022301, PLB 750 (2015) 64-71, PRC 107 (2023) L061901

First estimate of NLO dilepton emission at $\mu_B \neq 0$ with hydrodynamics

J. Churchill, LD, C. Gale, G. Jackson & S. Jeon, arXiv: 2311.06675, 2311.06951

17

RAPIDITY AND μ_B **DEPENDENCE**

- μ_B -dependence is not significant for 7.7 GeV and higher beam energies
- Sensitivity of real photons to μ_R (excess of q to \bar{q}) might be stronger

THERMAL DILEPTON AS THERMOMETER

- dilepton spectrum
- Not about μ_B extraction, but very useful!

Extract the initial QGP temperature from the effective temperature derived from the

SUMMARY

I. Rapidity distributions

- losses.
- mechanisms.
- II. Baryonic $v_1(y)$
- The plateau component may originate from string junctions.
- III. Thermal dilepton
- Electromagnetic probes help to measure quarks and anti-quarks.

Nucleon deceleration and string junction breaking correspond to different energy

Probing the total energy deposited in the fireball helps differentiate these two

We introduced a central plateau component in the initial baryon distribution, essential for explaining characteristic features of $v_1(y)$ at various beam energies.

THANK YOU FOR YOUR ATTENTION!

DIRECTED FLOW OF MESONS

PROBING EOS AT FINITE CHEMICAL POTENTIALS

- Λ's $v_1(y)$ beyond |y| ≥ 0.6
- The $v_1(y)$ of identified particles can be used to probe EoS at finite chemical potentials.

Fixed limits of EoS: NEOS-B, $\mu_S = \mu_O = 0$ and NEOS-BQS, $n_S = 0$, $n_O = 0.4n_B$ (2D projection of a 4D EOS)

Local strangeness neutrality suppresses the $v_1(y)$ of K^+ and Λ around midrapidity, and even alters the sign of

LD, C. Shen, S. Jeon & C. Gale, PRC 108 (2023) L041901

DILEPTON SPECTRA

- High-mass region (HMR)
 - Drell-Yan process
 - decays of J/ψ

- Intermediate-mass region (IMR)
 - thermal emission from QGP

- semileptonic decays from open heavy flavor-antiflavor pair, e.g. D/D
- Low-mass region (LMR)
 - thermal emission from hadronic matter
 - direct decays of $\rho/\omega/\phi$ (ρ is short-lived)
 - Dalitz (three body) decays of $\pi^0/\eta/\eta'$

Dilepton cocktail: late decays of hadrons

STAR, PLB 750 (2015) 64-71

TEMPERATURE EXTRACTION

In non-relativistic approximation, the emission rate $\frac{dR}{dM} \propto (MT)^{3/2} e^{-M/T}$

• Use thermal dileptons within $1 \text{GeV} \leq M \leq 3 \text{GeV}$ for temperature extraction $\ln\left(\frac{dN}{dM}M^{-3/2}\right) \propto \ln(T^{3/2}e^{-M/T}) = -\frac{M}{T} + \dots$

TEMPERATURE EXTRACTION IN τ

- Dots: effective temperature extracted from dilepton spectra

To obtain hydrodynamic temperature distribution, the temperature of each fluid cell is weighted by its energy density. curve: mean temperature; band: standard deviation

THERMAL DILEPTON AS THERMOMETER

- $\sqrt{s_{\rm NN}} = 7.7$ GeV because of the baryon chemical potential

• The final temperature is approximately a constant for $\sqrt{s_{\rm NN}} \gtrsim 19.6$ GeV and much smaller at

A correlation between the hydro initial temperature and effective temperature can be observed