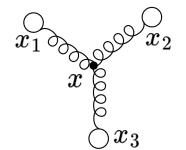

Tracing the baryon number in relativistic isobar collisions at RHIC

1st workshop on Baryon Dynamics from RHIC to EIC

Center for Frontiers in Nuclear Science Stony Brook University, 24th of Jan 2024

Grégoire Pihan¹, Akihiko Monnai², Bjoern Schenke³, Chun Shen^{1,3}

¹Wayne state University, Detroit, USA, ²Osaka Institute of technology, Osaka, Japan, ³Brookhaven National Lab, Upton, USA



String junction: The most simple way to build a hadron from quarks

Non-perturbative configuration of gluons represented by a locally gauge-invariant state vector.

G.C Rossi and G.Veneziano PHYSICS REPORTS 63, No. 3 (1980)



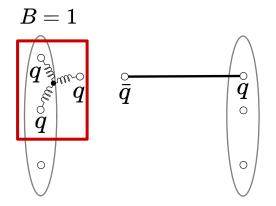
$$B=\epsilon^{ijk}\Big[P\expig(ig\int_{x_1}^xA_\mu\mathrm{d}x^\muig)q(x_1)\Big]_i\Big[P\expig(ig\int_{x_2}^xA_\mu\mathrm{d}x^\muig)q(x_2)\Big]_j\Big[P\expig(ig\int_{x_3}^xA_\mu\mathrm{d}x^\muig)q(x_3)\Big]_k$$

String junction: The most simple way to build a hadron from quarks

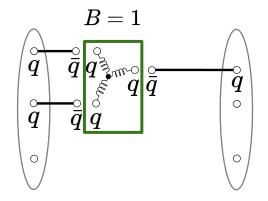
Non-perturbative configuration of gluons represented by a locally gauge-invariant state vector.

G.C Rossi and G.Veneziano PHYSICS REPORTS 63, No. 3 (1980)

$$B=\epsilon^{ijk}\Big[P\expig(ig\int_{x_1}^{x}A_\mu\mathrm{d}x^\muig)q(x_1)\Big]_i\Big[P\expig(ig\int_{x_2}^{x}A_\mu\mathrm{d}x^\muig)q(x_2)\Big]_j\Big[P\expig(ig\int_{x_3}^{x}A_\mu\mathrm{d}x^\muig)q(x_3)\Big]_k$$

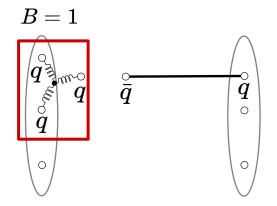

The string junction x carries the baryon number inside the baryon

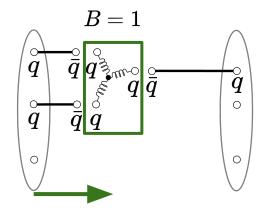
Can be verified experimentally: Baryon stopping in central pp and AA collisions


D. Kharzeev, Physics Letters B 378, 238 (1996)

2/18

The string junction allows two possibilities

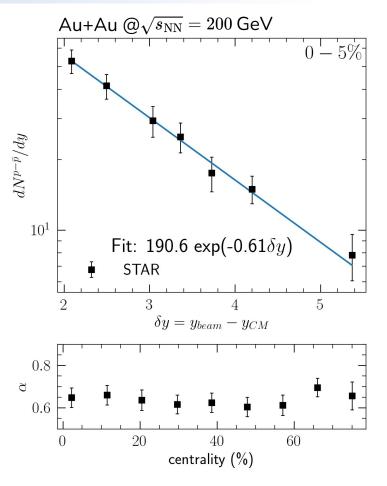

The baryon number remain attached to the nucleon


The baryon number to fluctuate towards mid-rapidity

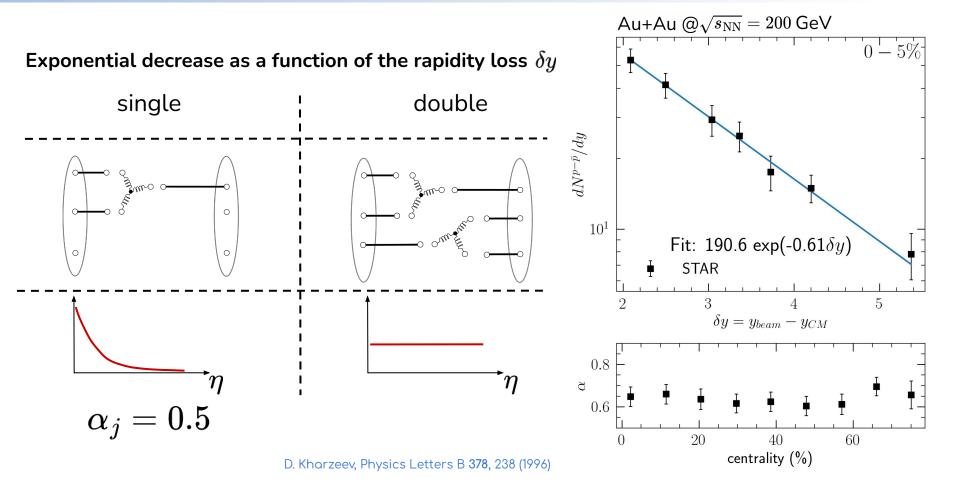
2/18

The string junction allows two possibilities

The baryon number remain attached to the nucleon

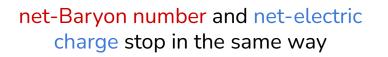


The baryon number is stopped!


Baryon stopping and string junction

Exponential decrease as a function of the rapidity loss δy

$$rac{dN^{p-ar{p}}}{dy} = Ne^{-lpha\delta y}
onumber \ N=190.6$$


Baryon stopping and string junction

Isobar Runs: Same number of nucleons A, different number of protons Z

Allow for the measurement of the baryon stopping compared to electric charge stopping!

Supposing that: Valence quarks carry the electric charge

Valence quarks carry the baryon number

net-Baryon number and net-electric charge stop differently

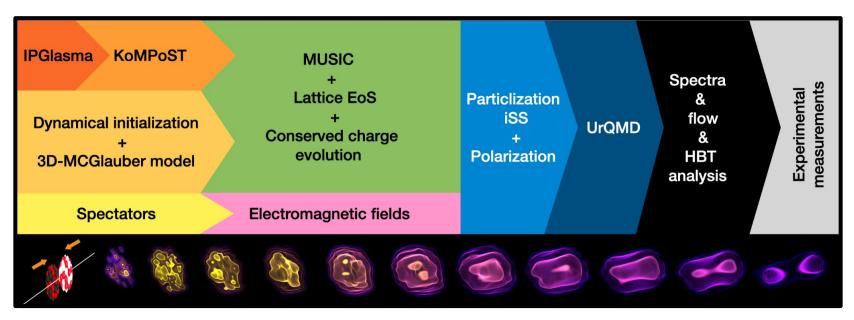
Baryon number is carried by something else. **Baryon junction?**

"Equal stoppings"

 η_s

"Different stoppings"

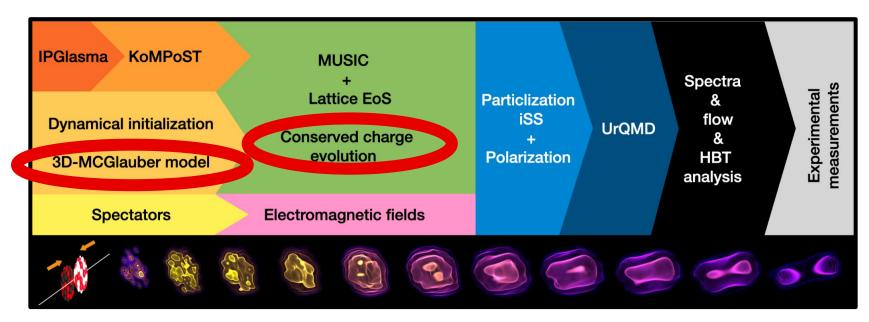
 η_s


Insight from the isobar collisions at RHIC

STAR Preliminary 2.2 Isobar (Ru + Ru, Zr + Zr) $\sqrt{s_{NN}} = 200 \text{ GeV}, |y| < 0.5$ 2.0 ø B/ΔX × ΔZ/A 1.0 2 ∮ This result indicates For isobars 200 GeV that there is more collisions at STAR, ∮ baryon stopping the ratio deviates than electric charge ∙ from unity! stopping Þ 1.0 0.8 25 50 75 100 125 150 (N_{part})

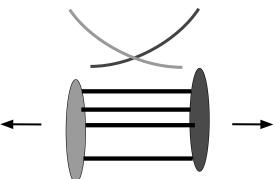
Is this a sign of the string junction?

STAR collaboration , in prep


Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

7/18

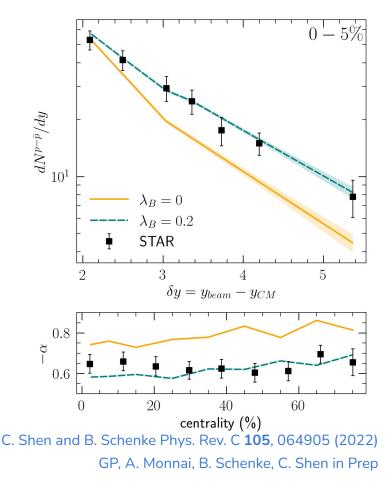

Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

Initial conditions from the string junction 1/3

Energy, momentum and charge deposition:

Energy-momentum string deceleration


Baryon/electric charge densities: nucleon + string junction

Probability for X = B, Q to be at rapidity: $y_{P/T}^X$

$$P(y_{P/T}^X) = (1-\lambda_X) {y_{P/T}} + \lambda_X {e^{(y_{P/T}^X - (y_P + y_T)/2)/2} \over 4\sinh((y_P - y_T)/4)}$$

 $y_{P/T}\,$: projectile or target rapidity

we neglect double junction in this study

Initial conditions from the string junction 2/3

Nucleon distribution: Wood-Saxon potential, nuclear structure and neutron skin

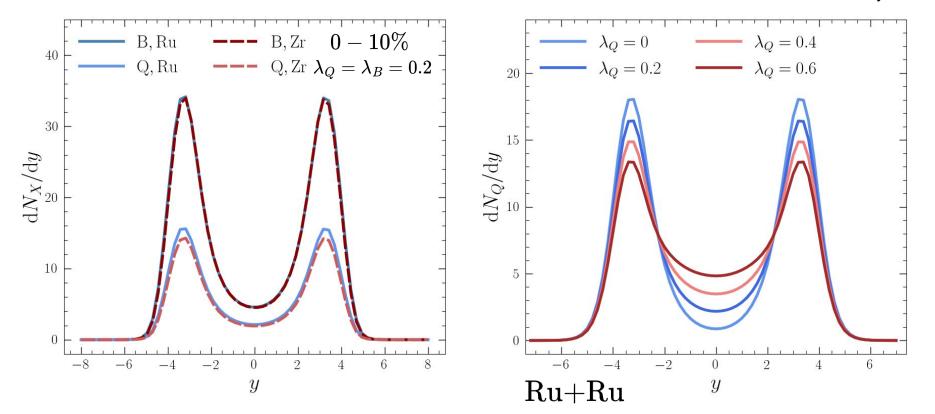
$$ho(r, heta)=rac{
ho_0}{1+e^{[r-R(heta,\phi)/a]}}$$

 $R(heta,\phi) = R_0 [1+eta_2(\cos(\gamma Y_{2,0})+\sin(\gamma Y_{2,2}))+eta_3 Y_{30}+eta_4 Y_{40}]$

	R	а	Ŷ	β ₂	β ₃	β ₄	da	dR
Ru	5.09	0.46	0.0	0.16	0.0	0.0	0.01	0.015
Zr	5.02	0.52	0.0	0.06	0.2	0.0	0.05	0.1

Neutron skin parameters: $\mathrm{d}a=a_n$ –

$$\mathrm{d} a_p \qquad \mathrm{d} R = R_n - R_p$$


9/18

Initial conditions from the string junction 3/3

Initial baryon and electric charge density rapidity distributions for isobar runs at $\sqrt{s_{ m NN}}=200~{ m GeV}$

Initial electric charge density rapidity distributions for different values of λ_Q

10/18

Impact of the hydrodynamic evolution on the initial B to Q stoppings ratio?

 $ho_Q\simeq 0.4
ho_B$

Impact of the hydrodynamic evolution on the initial B to Q stoppings ratio?

 $ho_Q\simeq 0.4
ho_B$

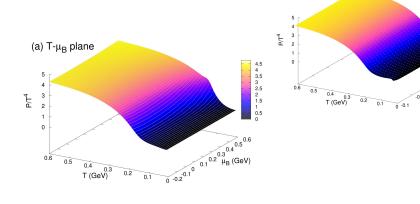
Not possible with this fixed constraint!

11/18

Impact of the hydrodynamic evolution on the initial B to Q stoppings ratio?

Ideal evolution of conserved charges

$$egin{cases} \partial_\mu T^{\mu
u} = 0 \ \partial_\mu N^\mu_X = 0 \end{cases}$$


B, Q and S current evolve independently!

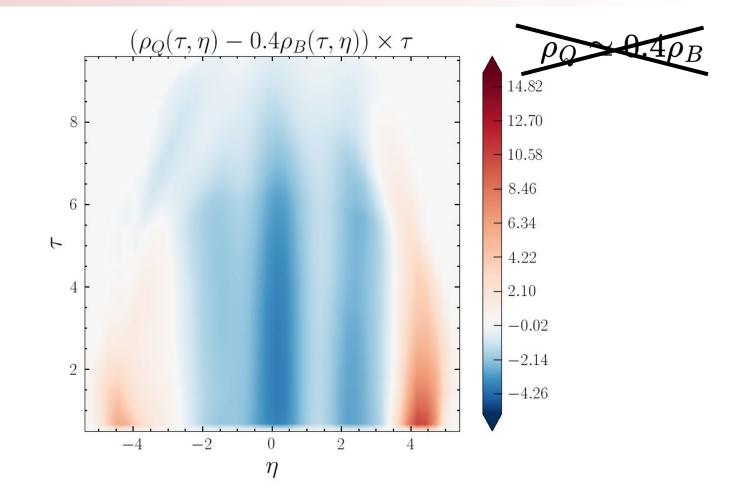
NEOS 4D equation of state

Lattice Taylor expansion at finite chemical potentials: $P_{
m HRG} = \pm T \sum_i \int rac{g_i {
m d}^3 k}{(2\pi)^3} {
m ln} \left[1 \pm e^{(E_i(k) - \mu_i)/T}
ight]$ Hadron Resonance Gas: i : hadronic species $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$ $rac{P}{T^4} = rac{1}{2} [1 - f(T, \mu_X)] rac{P_{HRG}}{T^4} + rac{1}{2} [1 + f(T, \mu_X)] rac{P_{ ext{Latt}}}{T^4} \quad ext{$X = B, Q, S$}$ Matching: (b) T-µ_O plane

No assumptions on the relation between conserved charge densities.

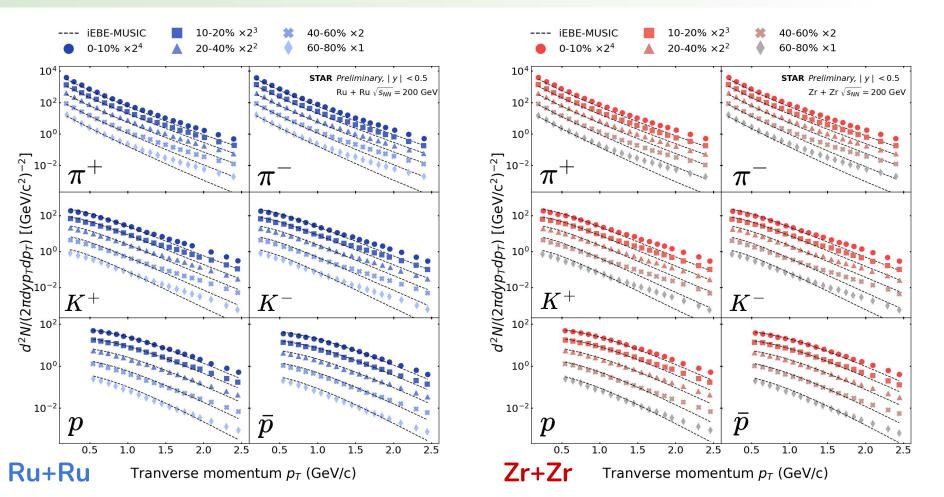
B to Q stopping ratio can be studied!

 $\frac{P_{\text{Latt}}}{T^4} = \frac{P_0}{T^4} + \sum_{l,n,m} \frac{\chi_{l,n,m}^{B,Q,S}}{l!n!m!} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^n \left(\frac{\mu_S}{T}\right)^m$


ام (GeV)

(c) T-µ_S plane

0.3 0.2


0.1 0 -0.1

Identified particles pT

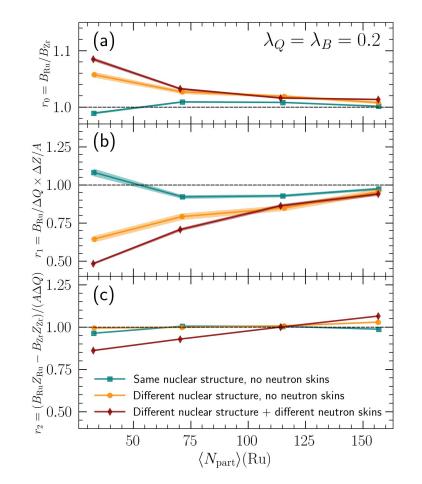
14/18

Equal stopping ratio definition

Charge conservation at mid-rapidity:

$$egin{array}{lll} B_X &= N_{B,X}[-0.5 < y < 0.5] \ Q_X &= N_{Q,X}[-0.5 < y < 0.5] \ X &= \mathrm{Ru}, \mathrm{Zr} \quad A_X = A \end{array} iggree Q_X &= B_X imes Z_X/A \end{array}$$

15/18


Differentiation with respect to collision system: $\Delta Q = \Delta B Z_{
m Zr}/A + B_{
m Ru}\Delta Z/A$ $\Delta Q = Q_{
m Ru} - Q_{
m Zr}$ $\Delta B = B_{
m Ru} - B_{
m Zr}$ $\Delta Z = Z_{
m Ru} - Z_{
m Zr}$

net-baryon number ratio at $r_2 = (\Delta B Z_{
m Zr} + B_{
m Ru} \Delta Z)/(A \Delta Q)$ $r_0 = B_{\mathrm{Ru}}/B_{\mathrm{Zr}}$ mid-rapidity $r_1 = B_{\mathrm{Ru}}\Delta Z/A$ $r_0 \sim 1$ "RuB ratio" $r_2 > 1$ $r_2\sim 1$ $r_2 = r_1 [1 + Z_{Z_r} / \Delta Z (1 - 1/r_0)]$ corrections due to r_0 charge conservation extra baryon at mid-rapidity. stopping! Disentangle contributions from stoppings, baryon number ratio Same stoppings.

and nuclear structure in RuB ratio "equal stopping" baseline!

Equal stopping and nuclear structure

Same nuclear structure, no neutron skins

 $r_0 : ~ 1 \text{ up to } 1\%.$

 \succ

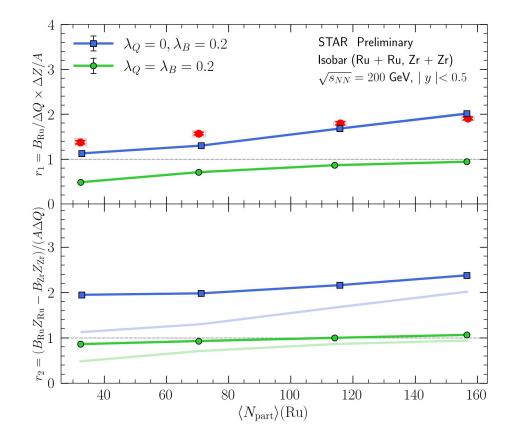
 r_1 : deviates from unity and has a non-monotonic structure. r_2 : closer to 1.

The baryon number ratio impacts r_1

Different nuclear structure, no neutron skins

 ${\rm r_0}$: global increase due to nuclear structure selection bias ${\rm r_1}$: ${\rm r_0}$ shape amplified by ΔQ^{-1}

 r_2 : closer to 1. Weakly related to r_0


The nuclear structure impacts r_1

Different nuclear structure + neutron skins

 $\rm r_{_2}$: shows the net effect from neutron skin (~20%) on the increasing behavior of $\rm r_{_1}.$

The increasing behavior is mainly due to the net baryon charge difference between Ru and Zr caused by different nuclear shapes

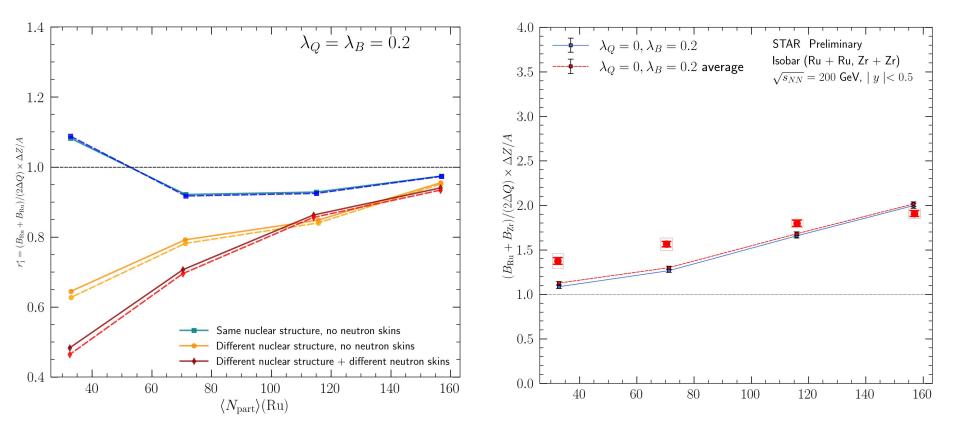
The centrality dependence of the ratio r_2 shows strong sensitivity to the neutron skin difference between Ru and Zr.

- \succ "Equal stopping" $\lambda_Q = \lambda_B = 0.2$
- Underestimate STAR data.
- r₁ < 1
- $r_2 \sim 1$
- \succ No Q stopping from junction $\lambda_Q=0$
- Closer to STAR data.
- $r_1 > 1$
- $r_2^{-} \sim 2$

 r_2 : Generally flatter. Npart behavior solely due the neutron skin.

Comparison to STAR measurement at initial stage advocates for a finite baryon transport due to string junctions, but not for electric charges. "Can gluon junction trace the baryon number?"

- Clear difference in baryon and electric charge stopping at STAR
- Results: compatible with STAR data for the baryon junction picture.
- The ratios is sensitive to the neutron skin: study of the nuclear structure?


The iEBE-MUSIC framework:

- 4D EoS in MUSIC
- Decoupled Net-B and Net-Q densitities evolution: study of **neutron rich nucleus collisions.**
- Short term: ML techniques to have an idea of final result.
- Long term: diffusion for conserved charge

Thank you for your attention!

backup

(RuB + ZrB) / 2

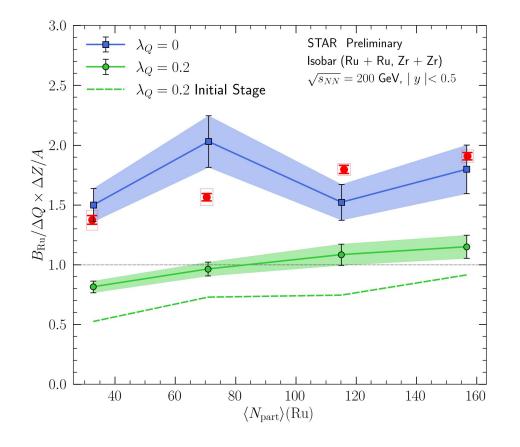
Experimental RuB ratio

$$B/\Delta Q imes \Delta Z/A$$

STAR does not measures neutrons, Evaluation of neutrons from deuterons yields via HRG model

 $N_B = (N_p - N_{ar p}) + (N_n - N_{ar n}) pprox (N_p - N_{ar p}) + ar p \sqrt{rac{d}{ar d}} - p \sqrt{rac{d}{ar d}}$

Net-charge difference:


Net-baryon number:

The electric charge is a non-trivial measurement at mid-rapidity (small yields!). Making use of the convenient double ratios to cancel uncertainties accessible in isobars collisions.

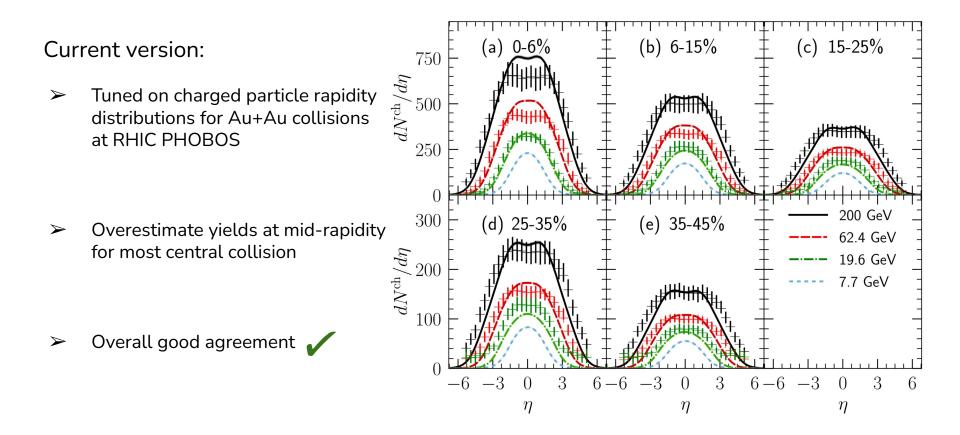
$$egin{aligned} \Delta Q &= [(N_\pi^+ + N_K^+ + N_p) - (N_\pi^- + N_K^- + N_{ar p})]_{ ext{Ru}} - []_{ ext{Zr}} \ R2_\pi &= rac{(N_\pi^+/N_\pi^-)_{ ext{Ru}}}{(N_\pi^+/N_\pi^-)_{ ext{Zr}}} pprox 1 + (N_\pi^+ - N_\pi^-)_{ ext{Ru}} - (N_\pi^+ - N_\pi^-)_{ ext{Zr}} \ \Delta Q &= N_\pi (R2_\pi - 1) + N_K (R2_K - 1) + N_p (R2_p - 1) \end{aligned}$$

STAR Collaboration, Phys Rev.99.064905

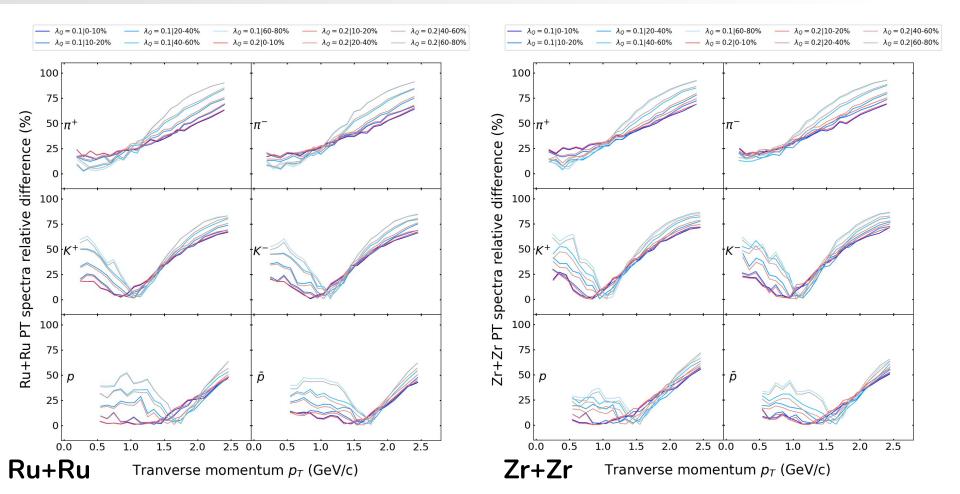
Ratio at final stage

- \succ "Equal stopping" $\lambda_Q = \lambda_B = 0.2$
- Underestimate the experimental ratio

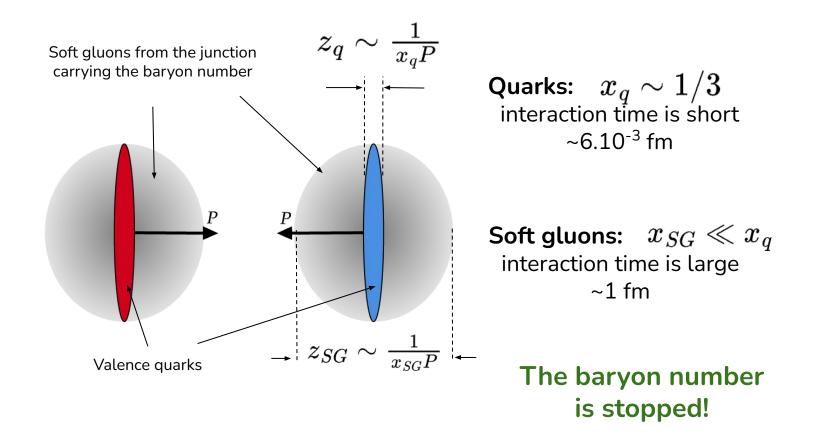
• ratio ~ 1.

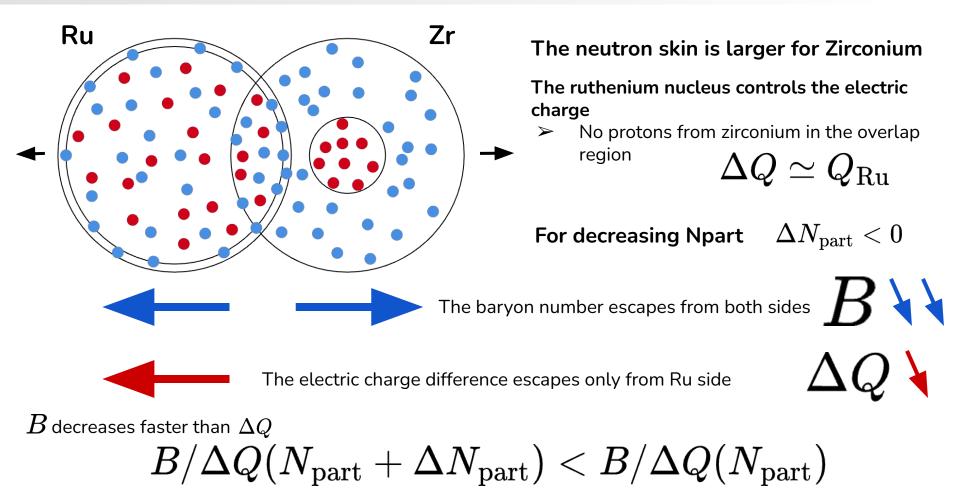

- > Q stopping from junction $\lambda_Q = 0$
- Close to experimental data

Initial to final stage: increase of 30%


Associated to a mismatch between HRG and urQMD particle list.

Ideal hydrodynamics is not expected to have a strong impact on initial ratios.


MUSIC tuning on PHOBOS Au+Au data


Backup: PT spectra relative difference

Backup: Gluon cloud interpretation

Backup: Geometrical interpretation of ratio(Npart)

