Updates from the Gamma-Factory Study Group at CERN

CNFS Workshop, Stony Brook, March 2024

Mieczyslaw Witold Krasny Gamma Factory study group leader LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

"Gamma Factory" studies

The Gamma Factory proposal for CERN †

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny* LPNHE, Universités Paris VI et VII and CNRS–IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Curatola¹³, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory studies are anchored, and supported by the CERN Physics Beyond Colliders (PBC) framework. More info on all the GF group activities:

We acknowledge the crucial role of the CERN PBC framework in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Gamma Factory beams

Gamma Factory photon source

1. Point-like, small divergence

 $\succ \Delta z \sim I_{\text{PSI-bunch}}, \Delta x, \Delta y \sim \sigma^{\text{PSI}}{}_{x}, {}^{\text{PSI}}{}_{y}, \Delta(\theta_{x}), \Delta(\theta_{y}) \sim 1/\gamma_{L} < 1 \text{ mrad}$

2. Huge jump in intensity:

> 6–8 orders of magnitude w.r.t. existing (being constructed) γ -sources up to 10¹⁸ photons/sec

3. Very wide range of tuneable energy photon beam :

> 10 keV – 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

4. Tuneable polarisation:

> γ -polarisation transmission from laser photons to γ -beams of up to 99%

<u>5. Unprecedented plug power efficiency (energy footprint):</u>

LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

<u>A concrete example</u>: Nuclear physics application: He-like, LHC Calcium beam, (1s→2p)_{1/2} transition, TiSa laser

laser pulse parameters

- Gaussian spatial and time profiles,
- photon energy: E_photon = 1.8338 eV
- photon pulse energy spread: sigma_{omega}/omega = 2 x 10^{-4},
- photon wavelength: lambda = 676 nm,
- pulse energy: W_{I} = 5 mJ,
- peak power density 1.12 x 10^13 W/m^2
- r.m.s. transverse beam size at focus: sigma_{x} = \sigma_{y} = 150 um (micrometers),
- Rayleigh length: R_{L,x} = R_{L,y} = 7.5 cm,
- r.m.s. pulse length: I_{I} = 15 cm.

6. Highly-collimated monochromatic γ–beams:

- the beam power is concentrated in a narrow angular region (facilitates beam extraction)
- the (E_γ, Θ_γ) correlation can be used (collimation) to
 "monochromatise" the beam

Secondary beams' sources – Intensity/quality targets

- Polarised positrons potential gain of up to a factor of 10⁴ in intensity w.r.t. the KEK positron source, satisfying both the LEMMA and the LHeC requirements
- Pions quasi-monochromatic pion source (spectral width of ~30 MeV in momentum and transverse momentum) -- of comparable intensity to that of FNAL and KEK (~10¹⁴ pions/s)
- Muons potential gain by a factor of 10³ in intensity w.r.t. the PSI muon source, charge symmetry ($N\mu^+$ ~ $N\mu^-$), polarisation control
- Neutrinos fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven by the beams of polarised muons
- Neutrons potential gain of up to a factor of 10⁴ in intensity of primary MeV-energy neutrons per 1 MW of the driver beam power
- \blacktriangleright **Radioactive ions** potential gain of up to a factor 10⁴ in neutron-rich isotopes

Gamma Factory quasi-monochromatic pion source:

Idea: De-randomising pion spectra and restoring their charge symmetry

Three Laser/LHC-beam scenarios for the muon beam production

3. Heliumlike ytterbium scenario

A possible remedy to increase the photon beam energy is to use ions with a higher atomic number Z. This can be done at the cost of further reducing the laser photon wavelength to the value of $\lambda = 129.25$ nm. Photons of such a wavelength can be produced by performing three consecutive frequency doubling stages of the $\lambda = 1034$ nm photons generated by the GF-PoP laser. They can resonantly excite the $1s^2 {}^{1}S_0 \rightarrow 1s2p {}^{1}P_1$ atomic transition of heliumlike ytterbium beam particles, $^{174}_{70}$ Yb⁶⁸⁺, provided that the relativistic Lorentz factor γ_L of the beam particles is chosen to be $\gamma_L^{\rm Yb} = 2731$. It corresponds to the equivalent proton energy of 6.47 TeV. This value is within the allowed LHC-beam momentum range. The maximal photon beam energy to be reached in this scheme is 286.2 MeV. A GF photon beam of power up to 4 MW can be generated in this scheme with the presently operating LHC cavities and 1000 bunches of 10^9 ions per bunch.

1. Heliumlike tin scenario

The laser-photon wavelength to resonantly excite the $1s^{2} {}^{1}S_{0} \rightarrow 1s2p^{1}P_{1}$ atomic transition of the heliumlike tin beam particles, ${}^{120}_{50}$ Sn⁴⁸⁺, is chosen to be $\lambda = 517$ nm. This photon wavelength can be obtained by doubling the frequency of the photons produced by the GF-PoP $\lambda =$ 1034 nm laser. In this scenario, the relativistic Lorentz factor γ_I of the beam particles which satisfies the resonance condition for head-on collisions of the ${}^{120}_{50}$ Sn⁴⁸⁺ ions with the laser pulses is $\gamma_L^{\text{Sn}} = 5362$. It corresponds to the equivalent proton energy of 12.47 TeV. Such energy cannot be reached with the present LHC dipoles but can be realized in the future HE-LHC project [14]. Photon beams of power up to 2.8 MW with the maximal photon energy of 275.8 MeV can be generated by the ${}^{120}_{50}$ Sn⁴⁸⁺ beam with the presently operating LHC cavities and 1000 bunches of 10^9 ions per bunch circulating in the LHC ring.

2. Heliumlike xenon scenario

The laser-photon wavelength to resonantly excite the $1s^{2} {}^{1}S_{0} \rightarrow 1s2p {}^{1}P_{1}$ atomic transition of heliumlike xenon beam particles, ${}^{129}_{54}$ Xe⁵²⁺, is chosen to be $\lambda = 258.5$ nm. Photons at this wavelength can be produced by two consecutive frequency doubling stages of the GF-PoP $\lambda = 1034$ nm laser photons. In this scenario, the relativistic Lorentz factor γ_I of the beam particles which satisfies the resonance condition is $\gamma_L^{Xe} = 3149$. It corresponds to an equivalent proton energy of 7.27 TeV, which is slightly above the allowed LHC-beam momentum range, reflecting the present quench-protection limit of the maximal current of the LHC dipoles. The maximal photon-beam energy that could be reached in this scheme is 190.2 MeV. Photon beams of the power up to 3 MW can be generated by the $^{129}_{54}$ Xe⁵²⁺ beam with the presently operating LHC cavities and 1000 bunches of 10^9 ions per bunch. Due to the

GF photon beam for muon production

PSI beam	$^{174}_{70}{ m Yb}^{68+}$
m – ion mass	$161.088\mathrm{GeV/c^2}$
E – mean energy	$440 { m TeV}$
$\gamma_L = E/mc^2$ - mean Lorentz relativistic factor	2731.3
N – number ions per bunch	10^{9}
σ_E/E – RMS relative energy spread	$2 imes 10^{-4}$
$\beta_x = \beta_y - \beta$ -function at IP	0.5 m
$\sigma_x = \sigma_y - \text{RMS}$ transverse size	$16\mu{ m m}$
σ_z – RMS bunch length	15 cm
Bunch repetition rate	$20\mathrm{MHz}$
Laser	Yb:YAG
λ – photon wavelength	129.25 nm
$\hbar\omega$ – photon energy	$9.5926\mathrm{eV}$
σ_{λ}/λ – RMS relative band spread	$2 imes 10^{-4}$
U – single pulse energy at IP	$5\mathrm{mJ}$
$\sigma_x = \sigma_y$ – RMS transverse intensity distribution at IP	$20\mu{ m m}$
σ_z – RMS pulse length	15 cm
θ_l – collision angle	0 deg
Atomic transition of $^{174}_{70}$ Yb ⁶⁸⁺	$1s^2 {}^1\mathrm{S}_0 \rightarrow 1s2p {}^1\mathrm{P}_1$
$\hbar \omega_r'$ – resonance energy	$52.4\mathrm{keV}$
au' – mean lifetime of spontaneous emission	$1.01 \times 10^{-16} \mathrm{s}$
g_1, g_2 – degeneracy factors of the ground and excited states	1,3
$\hbar \omega_1^{\max}$ – maximum emitted photon energy	$286.2\mathrm{MeV}$

W.Placzek

Number of produced μ^+ and μ^-

Details in the presentation of Armen Apyan at the last year CNFS workshop and in Phys.Rev paper:

PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 083401 (2023)

Gamma Factory high-intensity muon and positron source: **Exploratory studies**

Armen Apyan[®],^{1,*} Mieczyslaw Witold Krasny[®],^{2,3} and Wiesław Płaczek[®]⁴ ¹A. Alikhanvan National Laboratory (AANL), 2 Alikhanian Brothers St., 0036 Yerevan, Armenia ²LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France ³CERN, BE-ABP, 1211 Geneva 23, Switzerland ⁴Institute of Applied Computer Science and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Krakow, Poland

Gamma Factory principles

Energy leap: High energy atomic beams play the role of passive light-frequency converters:

 $\gamma_{L} = E/M$ - Lorentz factor for the ion beam

Intensity leap: large cross-section for atomic collisions

Gamma Factory requirements: Atomic beams

- Include atomic beams of partially stripped ions in the LHC menu
- Collide them with laser pulses (circulating in Fabry-Pérot resonators) to produce beams of polarized photons and secondary beams of polarized electrons, positrons, muons, neutrons and radioactive ions

Ion Source

Small sliver of solid isotopically pure 208Pb is placed in a ceramic crucible that sits in an "oven"

- Pulsed operation in afterglow mode, produces ~ms long pulses at 10Hz, only ~200 us pulses are accelerated, not all pulses.
- Equipped with gas injection and 2 microovens

<image>

The metal is heated to around 800° C and ionized to become plasma. Ions are then extracted from the plasma and accelerated up to 2.5 keV/nucleon.

The source can also be set up to deliver other species... O, Ar, Xe ...

Ion Chain : Low Energy Ion Ring

LEIR accumulates the 200 µs pulses from Linac3; then it bunches the beam (1 or 2 or 3bunches) Electron Cooling is used to achieve the required brightness. Acceleration to 72 MeV/nucleon (Pb) before transfer to the PS. LEIR Cycle is 2.4 s or 3.6 s. Pb54+ is fully stripped to Pb82+ in the transfer line from PS to SPS

Sustainability: Re-use of already existing accelerator

infrastructure – CERN

Gamma Factory (additional) requirements:

- modification of the ion stripping scheme,
- storage of atomic beams

Status 2024: Requisite TT2 stripper system installed

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

The two tanks of the new stripper system were installed during YETS 2021-2022 and YETS 2022-2023. Four stripper foil mechanisms operating at ~Hz frequency.

Polarised beams in GF: He-like beams (Er:glass laser (1522 nm))

For more details see presentations at our recent, November 2021, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

Atomic beams in the LHC – beam collimation

Atomic beams in the LHC - laser cooling

Opens a possibility of forming at CERN **highenergy** hadronic bunches of the required longitudinal and transverse emittances and population, (bunch merge + cooling) within a seconds-long time scale.

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

Gamma Factory requirements: Laser system

Fabry-Pérot (FP) resonators and their integration in the electron storage rings

HERA storage ring

KEK – ATF ring

Towards the first integration of the FP resonator in the hadron storage ring \rightarrow

Fabry-Pérot (FP) enhancement

Optical cavity

- > Recycle the laser
- Enhance the injected power due to resonance

Hemi-spherical cavity mode

- Spherical mirror: waist size control
- Planar mirror: compensates for length change

Injected beam and cavity mode:

- Same repetition rate
- Beam profile matching
- Polarization matching
- Phase matching
- Allows significant enhancement factors on the laser power (10³~10⁴)

Fabry-Pérot (FP) enhancement -- challenges

GF Laser was procured (fall 2023) and is being tested

Excellent phase-noise performance Pulse duration External PD, RBW = 30 Hz **Piezos tuning ranges** Measured - sech² fit MENHIR-1030 SN4609001 MENHIR-1030 $\tau_{pulse} = 200 \, \text{fs}$ 1.0 ◆ Slow PZT (fast PZT @ 50 V) — Linear Fit (arb.) 8'0 -20 160.312 MENHIR-1030 (dBc) SN4609001 signal -40 rate (MHz) 160.310 10.4 -60 160.308 8 0.2 Repetition -80 0.0 160.29 160.30 160.31 160.32 160.33 160.306 -600 -400 -200 200 400 0 Frequency (MHz) Time (fs) Measured at 160 MHz --- Detection limit 20 40 60 80 MENHIR-1030 Slow PZT voltage (V) -25 SNI ◆ Fast PZT (slow PZT @ 50 V) — Linear Fit -50 (dBc/Hz) MENHIR-1030 -75 SN/ 160.3085 (WHZ) 160.3084 -100 PSD (-125 -150 Repetition 160.3083 -175 Measured: 0.02% [1 Hz - 1.0 MHz] 160.3082 <mark>%</mark> 0.04 20 40 60 80 Fast PZT voltage (V) Supply accepted and shipped to IJCLab **Z** 0.02 0.00 _____ 10⁰ Nov 2023 for further testing with FP cavity 10¹ 10^{2} 10^{3} 104 105 10 10^{7}

Frequency (Hz)

29

Status: February 204

	Current status	GF PoP
FSR	160 MHz	40 MHz
Cavity linewidth	10 kHz	4 kHz
Finesse	17,000	10,000
Gain	3,400	5,000
Coupling efficiency	70%	70%
Amplified power	70 W	50 W
Estimated power	170 kW	180 kW
	Feb 2024	

GF PoP – Gamma Factory proof-of-principle experiment

Proof of Principle at SPS

The purpose of the GF SPS PoP experiment

Demonstrate that an adequate laser system (5mJ@40MHz) can be (remotely) operated in the high radiation field of the SPS.

Demonstrate that very high rates of photons are produced : almost all PSI's are excited in single collision of the PSI bunch with the laser pulse

Demonstrate stable and repeatable operation

Confront data and simulations

3

5

6

Demonstrate ion beam cooling: longitudinal and then transverse

Atomic physics measurements

Estimated cost of the experiment 2.5 MCHF

PM-YD-SMF

spectrometer

CFBG-TEC

FBG

low phase noise laser oscillator

frontend

tunable bandwidth filter

Lab

Locking

Integration in SPS

- Measured the vibration spectral content during 6 hours with SPS equipment switched ON.
- Accuracy was down to few pm in length and up to 10 kHz in frequency.
- Largest contributions are acoustics below 1 kHz, with eventual tones at 2.3 kHz.
- Need to check the coupling of vibrations to future laser beamline and with a Fabry-Perot cavity resembling the future experiments

Status of the ingredients for lasers for PoP experiment (and next steps):

- TI18 area, conversion to a laser lab in LS3
- Fabry-Perot Cavity with large gain factor at IJCLab and transfer to CERN
- Ultra low-phase noise laser and amplification chain procurement and commissioning
- · Laser beam delivery system, controls and diagnostics at IP
- Full remote end-to-end operation of laser beams

Main areas of activity of the Gamma Factory group in 2024

• *GF*–*PoP* experiment preparation (to be installed in the LS3 shutdown)

(not discussed in this presentation)

- Beam cooling scenarios studies
- Gamma Factory based subcritical reactor with waste transmutation capacity studies
- Photon beam production scheme in the EM field zone conceptual developments
- Scheme to produce twisted photon beams conceptual development
- Gamma Factory polarised positron source simulations