Pion Photo-Production on the Perspectives of Muon Production: Validation of the JLab Physics In GEANT4

Sokhna Bineta Lo Amar

Progress on the Production of Muon and Photon Beams for Applications in Muon-Ion Colliders March 26, 2024

Perspectives of muon production via charged pions

 Importance of muon beams in Nuclear Physics, deserved to be studied. It is therefore crucial to study the charged pion decay into muon and its neutrino.

 $\Rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$

- Good understanding of pion photo-production using GEANT4 tool required
- Identification and validation of GEANT4 hadronic models for pion photo-production reactions

Introduction

- □Pion photo-production: good alternative to probe matter
- Electromagnetic and Hadronic interactions combined

CLAS, CEBAF Large Acceptance Spectrometer

 Experiences performed with the CLAS detector, located in the hall B of JLab CLAS, detector allowing to probe deeply the nucleons with high statistics

GEANT4, GEometry ANd Tracking 4

- Tool dedicated for simulation between particle and matter and for data analysis
- Applications, high energy, nuclear energy, space and materials sciences to medical physics

Goal

Validate GEANT4 physics using JLab data in the GeV range

Outline

GEANT4

Cross-sections and Comparison

Results

Conclusion

Perspectives

GEANT4

Physics implementation and Photo-production reaction

□Interactions in GEANT4 as a physics processes □Tens of categories of hadronic models (GEANT4

GEANT4

Physics implementation and Photo-production reaction

Models	Incident particles	Incident energies	Applications	Models in function of
String models: Quark-Gluon-String (QGS) Fritiof (FTF)	p, n, K, π.	>~20 GeV >~5 GeV	Radioprotection and high energy	incidents particles, energy range, applications
Cascade models: Bertini (BERT) Binary Invariant Cascade (BIC)	p, n, π , K, Λ , Σ^+ , Σ^- L, Ω^- , Ξ^- , Ξ^- , γ p, n, γ p, n, π^+ , π^-	<~10 GeV	Intermediate energies	Tens of models but users interesting in a restricted
Chiral Invariant Phase Space (CHIPS)	μ, π, K, anti-p, anti- baryon, γ	$\sim 1 \text{ MeV} \rightarrow \sim 10 \text{ GeV}$	Intermediate to high energies	number, regularly tested and validated by GEANT4
Pre-compound model (P or PRECO)	p, n	<20 MeV	Low energy nucleon-nuclei interaction Nuclear de-excitation	Only two, potentially
High Precision Neutron (HP)	Neutrons	0→170 MeV	Detail neutron transport Radioprotection	production reactions in the: BERT and CHIPS

Cross-sections and Comparison Generalities

Cross-sections

- GEANT4, interactions between particle and matter quantified by exclusive/inclusive cross-sections
- Cross-sections data tabulated for each hadronic model

Comparison: PDG and GEANT4 (BERT & CHIPS)

- PDG: Particle data Group, large database including diverse compilations
- Comparison: GEANT4 and SAID + experimental data of JLab
- SAID: Scattering Analysis Dial-in

(Phenomenological model based on word-wide experimental data and maintained by GWU)

Missing data from CLAS below 600 MeV

Cross-sections and Comparison GEANT4 (CHIPS) vs PDG

- CHIPS_Stand_alone allows to verify the tabulated data
- Superimpose perfectly
- □CHIPS_tabulated
- fits correctly with PDG data

Cross-sections and Comparison GEANT4 (CHIPS) vs CLAS/SAID

GEANT4_CHIPS

 Reproduce experimental resonances (Δ resonance of CHIPS normalized to SAID) Cross-sections and Comparison GEANT4 (BERT) vs CLAS/SAID

GEANT4_BERT

- Correctly describe the Δ resonance of SAID for the π⁰ and π⁺ channels
- Not enough data around the 2nd and the 3rd resonances
- Revised in version 10: Slightly improved but more needed

Results Total cross-sections

\Box CHIPS_n π^+ :

- Data normalized to the 1st and 2nd resonances of SAID in the top and bottom figure respectively
- Correct description of the physics
 behind the experimental data by the model

□Relativistic BW fits of π^+ cross-sections from CLAS data, the phenomenological model SAID and the simulated data of CHIPS

Results BW parameters fits comparison

${ m N}\pi^+$	Parameters	1 st Peak	2 nd Peak	3 rd Peak
		∆ (1232)	N*(1440) - N*(1520)	N*(1650) – N*(1720)
CLAS	σ ₀ (μb)	-	-	5.442 5± 4.324
	M (GeV)	-	-	1.666 ± 0.019
	Γ (GeV)	-	-	0.097 ± 0.083
SAID	$\sigma_0 \left(\mu b \right)$	24.817 ± 2.498	10.026 ± 2.755	4.574 ± 0.825
	M (GeV)	1.208 ± 0.007	1.494 ± 0.019	1.664 ± 0.010
	Γ (GeV)	0.119 ± 0.002	0.115 ± 0.035	0.102 ± 0.023
CHIPS simu	σ ₀ (μb)	1.602 ± 0.113	0.429 ± 0.091	0.430 ± 0.043
	M (GeV)	1.237 ± 0.005	1.496 ± 0.009	1.724 ± 0.006
	Γ (GeV)	0.076 ± 0.007	0.087 ± 0.020	0.120 ± 0.016

Results BW parameters fits comparison

$$M_{Peak} = \frac{\sum_{i=1}^{N=3} \omega_i M_i}{\sum_{i=1}^{N=3} \omega_i}$$

SAID-CHIPS : the agreement the effective masses (widths) are within 2.4% (36.16%) for the (1232), 0.13% (32.18%) for the 2nd peak and 3.61% (17.65%) for the 3rd peak, respectively.

$$\Gamma_{Peak} = 2M_{Peak} \sqrt{\frac{1}{N-1} \sum_{i}^{N} \left(\frac{\Gamma_{i}/2}{M_{i}}\right)^{2}}$$

$$\omega_{i} = \frac{\Gamma_{i}/2}{M_{i}}$$

Results Angular distribution

- Angular distributions very different
- No agreement between CLAS and SAID from 2.775 GeV

Results Cross-sections integrated

□Differential cross-sections of GEANT4 integrated on all the scattering angle (0 - 180°) or according the CLAS acceptance (8 - 140°) overlap perfectly the total cross-sections data.

Summary

□Study the validity of JLab physics in GEANT4 for the pion photo-production reactions off proton

- CHIPS (Chiral Invariant Phase Space)
- BERT (BERTini Cascade).

□Verification of tabulated photo-production cross-sections through the Stand-alone code.

Comparison of tabulated data with experimental data (CLAS/SAID) and PDG

□Simulation of the exclusive pion production reactions via an incident photon beam, using the CHIPS model.

Perspectives

- Calculate the individual contribution of resonances under the 2nd and 3rd peak
- Improved performance of CHIPS for describing differential cross sections
- Take back the CHIPS hadronic model into GEANT4 tool!

References

https://doi.org/10.1140/epja/s10050-021-00640-3 https://link.springer.com/article/10.1140/epja/i2019-12732-4 E-mail: <u>sokhnabinetalo.amar@ucad.edu.sn</u>

Perspectives

- Study of the muons photoproduction via pion decay using the hadronic models;
- Comparison with the GEANT4 EM models;
- Validation with experimental data.
- References
- <u>https://doi.org/10.1140/epja/s10050-021-00640-3</u>
- <u>https://link.springer.com/article/10.1140/epja/i2019-12732-4</u>
- E-mail: <u>sokhnabinetalo.amar@ucad.edu.sn</u>

Update of the GEANT4 Hadronic Physics models inventory from 10.07 version

Thank you so much!