

Phenomenology of transverse momentum distributions of the pion and proton

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: Phys. Rev. D 108, L091504 (2023).

Pions

- To give insights into color confined systems, we shouldn't limit ourselves to only proton structures
- Pion presents itself as a <u>dichotomy</u>
- 1. It is the Goldstone boson associated with spontaneous symmetry breaking of chiral $SU(2)_L \times SU(2)_R$ symmetry
- 2. Made up of quark and antiquark constituents

Available datasets for pion structures

3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs

Unpolarized TMD PDF

$$\tilde{f}_{q/\mathcal{N}}(x,b_T) = \int \frac{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr}\left[\langle \mathcal{N} | \bar{\psi}_q(b)\gamma^+ \mathcal{W}(b,0)\psi_q(0) | \mathcal{N} \rangle\right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q/N}(x, b_T) \rightarrow \tilde{f}_{q/N}(x, b_T; \mu, \zeta)$

Factorization for low- q_T Drell-Yan

- Triply differential cross section, dependent on $\tau = Q^2/S$, rapidity Y, and transverse momentum q_T
- Cross section has hard part and two functions that describe structure of beam and target
- So called "W"-term, optimized at low- q_T

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\tau\mathrm{d}Y\mathrm{d}q_{T}^{2}} = \frac{4\pi^{2}\alpha^{2}}{9\tau S^{2}} \sum_{q} H_{q\bar{q}}(Q^{2},\mu) \int \mathrm{d}^{2}b_{T} \, e^{ib_{T}\cdot q_{T}} \\ \times \tilde{f}_{q/\overline{\pi}}(x_{\pi},b_{T},\mu,Q^{2}) \, \tilde{f}_{\bar{q}/\underline{A}}(x_{A},b_{T},\mu,Q^{2}) + \mathcal{O}\left(\frac{q_{T}}{Q}\right)$$

TMD PDF within the b_* prescription

$$\mathbf{b}_*(\mathbf{b}_T)\equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{ ext{max}}^2}}.$$

Low- b_T : perturbative high- b_T : non-perturbative

Details on the analysis

- Focus on the low-energy fixed target Drell-Yan data
 - Regime available for pion physics
- Introduce proton TMDs and A-dependent TMD parameter to understand the nuclear background Phys. Rev. Lett., **129**, 242001 (2022)
- We use the MAP collaboration's parametrization for non-perturbative TMDs JHEP 10 (2022) 127
 - Only tested parametrization flexible enough to capture features of Q bins
- Perform a **simultaneous global analysis** of pion TMD and collinear PDFs, with proton (nuclear) TMDs

Note about E615 πA Drell-Yan data

- Provides both $\frac{d\sigma}{dx_F d\sqrt{\tau}}$ (p_T -integrated) and $\frac{d\sigma}{dx_F dp_T}$ (p_T -dependent)
 - Large constraints on π collinear PDFs from p_T -integrated
 - Large constraints on π TMD PDFs from p_T -dependent
- Projections of same events \Rightarrow correlated measurements
- They have the **same luminosity** uncertainty, so they have the **same** overall **normalization** uncertainty
- To account for this, we *equate* the fitted normalizations of the two otherwise independent measurements
 - No other guidance from experiment how the uncertainties are correlated

Note on collinear DY theory

- When equating the normalizations, we found
 - **Agreement** when using **NLO** theory on the collinear observables
 - Tension when using NLO+NLL threshold resummed theory on the collinear observables
- We note that in the OPE part of the TMD formalism, we use NLO accuracy
 - We do not use any <u>threshold enhancements</u> on the p_T -dependent observables

Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \; (\text{GeV})$	χ^2/N	Z-score
TMD				
q_T -dep. pA DY	E288 [90]	19.4	1.07	0.34
$pA \rightarrow \mu^+\mu^-X$	E288 [<mark>90</mark>]	23.8	0.99	0.05
	E288 [<mark>90</mark>]	24.7	0.82	0.99
	E605 [<mark>91</mark>]	38.8	1.22	1.03
	E772 [<mark>92</mark>]	38.8	2.54	5.64
(Fe/Be)	E866 [<mark>93</mark>]	38.8	1.10	0.36
(W/Be)	E866 [<mark>93</mark>]	38.8	0.96	0.15
q_T -dep. πA DY	E615 [<mark>94</mark>]	21.8	1.45	1.85
$\pi W \to \mu^+ \mu^- X$	E537 [<mark>95</mark>]	15.3	0.97	0.03
collinear				
q_T -integr. DY	E615 [94]	21.8	0.90	0.48
$\pi W \to \mu^+ \mu^- X$	NA10 [96]	19.1	0.59	1.98
	NA10 [96]	23.2	0.92	0.16
leading neutron	H1 [97]	318.7	0.36	4.59
$ep \rightarrow enX$	ZEUS [98]	300.3	1.48	2.15
Total			1.12	1.86

Extracted pion PDFs

• The small- q_T data do not constrain much the PDFs

Resulting average
$$b_T$$

 $\langle b_T | x \rangle_{q/N} = \int d^2 b_T b_T \tilde{f}_{q/N}(b_T | x; Q, Q^2)$

- Average transverse spatial correlation of the up quark in proton is ~ 1.2 times bigger than that of pion
- Pion's $\langle b_T | x \rangle$ is $4 5.2\sigma$ smaller than proton in this range
- Decreases as x decreases

 \mathcal{X}

Emphasis on nonperturbative effects

- The $\langle b_T | x \rangle$ grows appreciably in the large- b_T region
- Saturation well beyond a perturbative scale
- Differences between proton and pion are in the nonperturbative region

Transverse EMC effect

- Compare the average b_T given x for the up quark in the bound proton to that of the free proton
- Less than 1 by $\sim 5 12\%$ over the x range

Outlook

- High energy data from the TeVatron and LHC provide further constraints on the proton TMDs
 - Potentially also to the collinear PDFs JHEP 01 (2022) 110
 - Explore various prescriptions for TMD treatment beyond CSS
- Combine the low- q_T and large- q_T pion-induced E615 Drell-Yan data, utilizing W + Y
 - Build upon our success to fit the large- q_T pion data Phys. Rev. D, 103, 114014 (2021).
- Future pion-induced and kaon-induced Drell-Yan data will be available from COMPASS and AMBER
 - Also additional tagged DIS processes from JLab and EIC

Backup

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

 e^{-}

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\max}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$= \frac{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{b}_{\mathrm{max}})}{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \zeta, \mu)} e^{g_{K}(b_{\mathrm{T}}; b_{\mathrm{max}}) \ln(\sqrt{\zeta}/Q_{0})}.$$

MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a complicated form for the non-perturbative function

$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2},$$

$$g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}}(1 - x)^{\alpha_{\{1,2,3\}}^{2}}}{\hat{x}^{\sigma_{\{1,2,3\}}}(1 - \hat{x})^{\alpha_{\{1,2,3\}}^{2}}},$$

$$g_{K}(\boldsymbol{b}_{T}^{2}) = -g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2} \quad \text{Universal CS kernel}$$

 11 free parameters for each hadron! (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

Resulting χ^2 for each parametrization

 Tried multiple parametrizations for nonperturbative TMD structures

MAP
 parametrization
 is able to
 describe better
 all the datasets

Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton

$$\tilde{f}_{q/A}(x,b_T,\mu,\zeta) = \frac{Z}{A}\tilde{f}_{q/p/A}(x,b_T,\mu,\zeta) + \frac{A-Z}{A}\tilde{f}_{q/n/A}(x,b_T,\mu,\zeta)$$

- Each object on the right side independently obeys the CSS equation
 - Assumption that the bound proton and bound neutron follow TMD factorization
- Make use of isospin symmetry in that $u/p/A \leftrightarrow d/n/A$, etc.

Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the flavor-dependent pieces of the TMD PDF as

$$(C \otimes f)_{u/A}(x)e^{-g_{u/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)} + \frac{A-Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}$$

and

$$(C \otimes f)_{d/A}(x)e^{-g_{d/A}(x,b_T)} \to \frac{Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)} + \frac{A - Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}.$$

Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett **129**, 242001 (2022).

$$g_{q/\mathcal{N}/A} = g_{q/\mathcal{N}} \left(1 - a_{\mathcal{N}} \left(A^{1/3} - 1 \right) \right)$$

• Where $a_{\mathcal{N}}$ is an additional parameter to be fit

Bayesian Inference

• Minimize the
$$\chi^2$$
 for each replica

$$\chi^2(\boldsymbol{a}, \text{data}) = \sum_e \left(\sum_i \left[\frac{d_i^e - \sum_k r_k^e \beta_{k,i}^e - t_i^e(\boldsymbol{a}) / n_e}{\alpha_i^e} \right]^2 + \left(\frac{1 - n_e}{\delta n_e} \right)^2 + \sum_k \left(r_k^e \right)^2 \right)$$

• Perform N total χ^2 minimizations and compute statistical quantities

Expectation value
$$\mathrm{E}[\mathcal{O}] = \frac{1}{N} \sum_k \mathcal{O}(\boldsymbol{a}_k),$$
Variance
 $\mathrm{V}[\mathcal{O}] = \frac{1}{N} \sum_k \left[\mathcal{O}(\boldsymbol{a}_k) - \mathrm{E}[\mathcal{O}]\right]^2,$

Correlations

- Level at which the distributions are correlated with each other
- Different distributions are largely correlated only within themselves

Emphasis on nonperturbative effects

- We vary the collinear PDFs $p: CT14nlo (blue) \rightarrow MMHT14 (green)$ $\pi: JAM (red) \rightarrow xFitter (orange)$
- No change in the quantity!

Collinear relation

- The TMD formalism requires that the integral over k_T^2 of the TMD gives the collinear PDF up to higher order corrections
- We demonstrate this for example in the proton case
- At larger Q, the power corrections are less important

Possible explanation

• At large *x*, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system

Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

$$\begin{split} \frac{C_{q\bar{q}}}{e_q^2} &= \delta(1-z) \, \frac{\delta(y) + \delta(1-y)}{2} \left[1 + \frac{C_F \alpha_s}{\pi} \left(\frac{3}{2} \ln \frac{M^2}{\mu_f^2} + \frac{2\pi^2}{3} - 4 \right) \right] \quad \underbrace{y = \frac{\tilde{x}_A \sigma}{(1-z)(1 + \frac{\tilde{x}_\pi}{\tilde{x}_A} e^{-2})} \\ &+ \frac{C_F \alpha_s}{\pi} \left\{ \frac{\delta(y) + \delta(1-y)}{2} \left[(1+z^2) \left[\frac{1}{1-z} \ln \frac{M^2(1-z)^2}{\mu_f^2 z} \right]_+ + 1 - z \right] \\ &+ \frac{1}{2} \left[1 + \frac{(1-z)^2}{z} y(1-y) \right] \left[\frac{1+z^2}{1-z} \left(\left[\frac{1}{y} \right]_+ + \left[\frac{1}{1-y} \right]_+ \right) - 2(1-z) \right] \right] \end{split}$$

Claim: Red terms are power suppressed in (1 - z) and wouldn't contribute to the same order as the yellow terms

 $z \equiv \frac{Q^2}{\hat{S}} = \frac{\tau}{\hat{x}_{\pi}\hat{x}_A}$

 $\frac{\hat{x}_{\pi}}{\hat{x}_{\pi}}e^{-2Y}-z$

Generalized Threshold resummation

G. Lustermans, J. K. L. Michel, and F. J. Tackmann, arXiv:1908.00985 [hep-ph].

• Write the (*z*, *y*) coefficients in terms of (*z_a*, *z_b*), and for the red terms, you get:

$$dz dy \frac{1}{1-z} \left(\frac{1}{y} + \frac{1}{1-y}\right) = dz_a dz_b \frac{1}{(1-z_a)(1-z_b)} \left[1 + \mathcal{O}(1-z_a, 1-z_b)\right]. \qquad z_b = \frac{x_A^0}{\hat{x}_A}$$

- This is *not* power suppressed in $(1 z_a)$ or $(1 z_b)$ but instead the same order as the leading power in the soft limit
- Generalized threshold resummation in the soft limit does not agree with the MF methods

 $z_a = \frac{x_\pi^0}{\hat{x}_\pi}$