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Pions

• To give insights into color confined systems, 
we shouldn’t limit ourselves to only proton 
structures
• Pion presents itself as a dichotomy
1. It is the Goldstone boson associated with 

spontaneous symmetry breaking of chiral 
𝑆𝑈 2 !×𝑆𝑈 2 " symmetry

2. Made up of quark and antiquark 
constituents
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DY

LN

• Much less available 
data than in the 
proton case

• Still valuable to 
study



Pion PDFs in JAM
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3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs
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Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• We can learn about the coordinate space correlations of quark fields 

in hadrons
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
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Factorization for low-𝑞! Drell-Yan

• Triply differential cross section, dependent on 𝜏 = 𝑄$/𝑆, rapidity 𝑌, 
and transverse momentum 𝑞%
• Cross section has hard part and two functions that describe structure

of beam and target
• So called “𝑊”-term, optimized at low-𝑞%
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TMD PDF within the  𝑏∗ prescription
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Low-𝑏!: perturbative
high-𝑏!: non-perturbative

Relates the TMD at 
small-𝑏! to the collinear
PDF
⇒ TMD is sensitive to 
collinear PDFs

𝑔"/𝒩(&): intrinsic non-perturbative TMD structure 
of the hadron 𝒩(𝐴)
𝑔(: universal non-perturbative Collins-Soper 
kernel – same in all hadrons

Controls the perturbative 
evolution of the TMD



Details on the analysis

• Focus on the low-energy fixed target Drell-Yan data
• Regime available for pion physics

• Introduce proton TMDs and 𝐴-dependent TMD parameter to 
understand the nuclear background Phys. Rev. Lett., 129, 242001 (2022)

• We use the MAP collaboration’s parametrization for non-perturbative 
TMDs JHEP 10 (2022) 127

• Only tested parametrization flexible enough to capture features of 𝑄 bins

• Perform a simultaneous global analysis of pion TMD and collinear 
PDFs, with proton (nuclear) TMDs
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Note about E615 𝜋𝐴 Drell-Yan data

• Provides both -.
-/!- 0

(𝑝%-integrated) and -.
-/!-1"

(𝑝%-dependent)
• Large constraints on 𝜋 collinear PDFs from 𝑝!-integrated
• Large constraints on 𝜋 TMD PDFs from 𝑝!-dependent

• Projections of same events ⇒ correlated measurements
• They have the same luminosity uncertainty, so they have the same

overall normalization uncertainty
• To account for this, we equate the fitted normalizations of the two 

otherwise independent measurements
• No other guidance from experiment how the uncertainties are correlated
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Note on collinear DY theory

• When equating the normalizations, we found
• Agreement when using NLO theory on the collinear observables
• Tension when using NLO+NLL threshold resummed theory on the collinear

observables

• We note that in the OPE part of the TMD formalism, we use NLO
accuracy
• We do not use any threshold enhancements on the 𝑝!-dependent

observables
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Data and theory agreement

• Fit both 𝑝𝐴 and 𝜋𝐴 DY data and achieve good agreement to both
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Extracted pion PDFs

• The small-𝑞% data do not constrain much the PDFs
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Resulting TMD PDFs 
of proton and pion

• Broadening appearing 
as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Resulting average 𝑏!

• Average transverse spatial 
correlation of the up quark 
in proton is ∼ 1.2 times 
bigger than that of pion
• Pion’s 𝑏% 𝑥⟩ is 4 − 5.2𝜎

smaller than proton in this 
range
• Decreases as 𝑥 decreases
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Emphasis on nonperturbative effects
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• The 𝑏% 𝑥⟩ grows appreciably in the large-𝑏% region
• Saturation well beyond a perturbative scale
• Differences between proton and pion are in the nonperturbative region
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Transverse EMC effect

• Compare the 
average 𝑏% given 𝑥
for the up quark in 
the bound proton to 
that of the free 
proton
• Less than 1 by          
∼ 5 − 12% over the 
𝑥 range
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Outlook

• High energy data from the TeVatron and LHC provide further 
constraints on the proton TMDs
• Potentially also to the collinear PDFs JHEP 01 (2022) 110

• Explore various prescriptions for TMD treatment beyond CSS

• Combine the low-𝑞% and large-𝑞% pion-induced E615 Drell-Yan data, 
utilizing 𝑊 + 𝑌
• Build upon our success to fit the large-𝑞! pion data Phys. Rev. D, 103, 114014 (2021).

• Future pion-induced and kaon-induced Drell-Yan data will be available 
from COMPASS and AMBER
• Also additional tagged DIS processes from JLab and EIC
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Backup
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Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏%, have to non-perturbatively describe large 𝑏%
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a 
complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barry@anl.gov 21

Universal CS kernel



Resulting 𝜒# for each parametrization

• Tried multiple 
parametrizations 
for non-
perturbative 
TMD structures
• MAP 

parametrization 
is able to
describe better 
all the datasets
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Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton 

• Each object on the right side independently obeys the CSS equation
• Assumption that the bound proton and bound neutron follow TMD 

factorization

• Make use of isospin symmetry in that 𝑢/𝑝/𝐴 ↔ 𝑑/𝑛/𝐴, etc.
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C𝑓3/5 𝑥, 𝑏% , 𝜇, 𝜁 =
𝑍
𝐴
C𝑓3/1/5 𝑥, 𝑏% , 𝜇, 𝜁 +

𝐴 − 𝑍
𝐴

C𝑓3/6/5 𝑥, 𝑏% , 𝜇, 𝜁



Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the 
flavor-dependent pieces of the TMD PDF as
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Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., 
Phys. Rev. Lett 129, 242001 (2022).

• Where 𝑎𝒩 is an additional parameter to be fit

barry@anl.gov 25



Bayesian Inference

• Minimize the 𝜒$ for each replica

• Perform 𝑁 total 𝜒$ minimizations and compute statistical quantities
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Expectation value

Variance

Normalization 
parameter



Correlations

• Level at which the 
distributions are 
correlated with each 
other
• Different distributions 

are largely correlated 
only within themselves
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Emphasis on nonperturbative effects
• We vary the collinear PDFs
𝑝: CT14nlo (blue) → MMHT14 (green)
𝜋: JAM (red) → xFitter (orange)
• No change in the quantity!
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Collinear relation

• The TMD formalism requires that the integral over 𝑘%$ of the TMD 
gives the collinear PDF up to higher order corrections
• We demonstrate this for example in the proton case
• At larger 𝑄, the power corrections are less important
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Possible explanation

• At large 𝑥, we are in a valence region, where only the valence quarks 
are populating the momentum dependence of the hadron

bT
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Possible explanation

• At small 𝑥, sea quarks and potential 𝑞N𝑞 bound states allowing only for 
a smaller bound system

bT
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Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

Claim: Red terms are power suppressed in (1 − 𝑧) and wouldn’t contribute 
to the same order as the yellow terms

barryp@jlab.org 32



Generalized Threshold resummation

• Write the (𝑧, 𝑦) coefficients in terms of (𝑧7 , 𝑧8), and for the red 
terms, you get:

• This is not power suppressed in (1 − 𝑧7) or (1 − 𝑧8) but instead the 
same order as the leading power in the soft limit 
• Generalized threshold resummation in the soft limit does not agree 

with the MF methods
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