TMD related measurements

From Quarks and Gluons to the Internal Dynamics of Hadrons SBU, May 15-17, 2024

Ralf Seidl (RIKEN)

Higgs P_T cross section: $p+p \rightarrow H+X$

- Higher transverse momentum described by higher-order pQCD
- However, low transverse momentum also depends on intrinsic transverse momentum of interacting partons \rightarrow gluon **TMD PDFs**
- Relatively large uncertainties due to TMD evolution to Higgs scales

TMD factorization in Drell-Yan

- Cross sections depend not only on the PDFs, but also on their transverse momenta
- Total transverse momentum of virtual photon to be matched with intrinsic momenta $F_{UU}(x_A, x_B, \mathbf{q_T}, Q)$

 $\sum_{q,\overline{q}} e_q^2 \int d^2 \mathbf{k_{tA}} \int d^2 \mathbf{k_{tB}} q_A(x_A, Q^2, k_{tA}) q_B(x_B, Q^2, k_{tB}) \delta^{(2)}(\mathbf{k_{tA}} + \mathbf{k_{tB}} + \mathbf{q_T})$ $= \sum_{q,\overline{q}} e_q^2 q_A(x_A, Q^2, k_{tA}) \otimes q_B^h(x_B, Q^2, k_{tB})$

K_{tB}

q_T

TMD factorization in SIDIS ($e+p \rightarrow e'h+X$)

2 [GeV]

- Cross section depends on intrinsic transverse momenta of PDFs and fragmentation functions
- Convolution over participating transverse momenta

 $F_{UU}(x, z, \mathbf{q_T}, Q)$ $\propto \sum_{q,\overline{q}} e_q^2 \int d^2 \mathbf{k_t} \int d^2 \mathbf{p_t} / z^2 q(x, Q^2, k_t) D_{1,q}^h(z, Q^2, p_t) \delta^{(2)}(\mathbf{k_t} + \mathbf{p_t} / z + \mathbf{q_T})$ $= \sum_{q,\overline{q}} e_q^2 q(x, Q^2, k_t) \otimes D_{1,q}^h(z, Q^2, p_t)$

TMD PDFs (at leading order)

TMD: all except f_1, g_1 and h_1 cancel upon integration over k_T

Similar spin-orbit and spin-spin effects between parton and nucleon spins and transverse momentum

 $h_{1,q}(x)$

 $f_{1T,q}^{\perp}(x,k_T)$

 $n_{1T,q}(x,k_T)$

Transversity

Sivers Function

Boer Mulders function

Leading Quark TMDPDFs (

→ Nucleon Spin (\bullet) Quark Spin

TMD handbook: 2304.03302

Closely related:

Ralf Seidl: TMDs

• Higher Twist correlations (TMD moments) $T_F(x,x)$

TMD Fragmentation functions

- Similarly 8 TMD FFs at leading twist
- Most typical final states are pions and kaons → only 2 FFs
- If polarized final state (and detection of spin possible) all 8 FFs available, eg Polarizing Λ FF discovered in Belle

Leading Quark TMDFFs

➡ Hadron Spin

Quark Spin

TMD handbook: 2304.03302

Full SIDIS cross section

- Various terms depend on proton spin, lepton helicity and azimuthal angles of final state hadron and proton spin relative to scattering plane
- Single, double spin and azimuthal asymmetries allow to single out the different TMD contributions

$$\begin{aligned} \frac{d\sigma}{x\,dy\,d\psi\,dz\,d\phi_{h}\,dF_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xy\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right]\\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]\\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right]\\ &+(s_{\perp})\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}+\phi_{S})}\right]+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right]\\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right]\\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right]\\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right], \end{aligned}$$

Experimental access to Transversity/tensor charge and Sivers function

• Sivers function obtained from sin $(\phi_h - \phi_s)$ modulation

 $A_{UT}^{\sin(\phi_h - \phi_S)}(x, z, P_T) \propto \mathbf{S}_T \frac{\sum_{q,\overline{q}} e_q^2 f_{1T}^{\perp,q}(x, k_t) \otimes D_1(z, p_t)}{\sum_{q,\overline{q}} e_q^2 q(x, k_t) \otimes D_1(z, p_t)}$

• Collins asymmetry and transverseity obtained from $sin(\phi_h + \phi_s)$ modulation

 $A_{UT}^{\sin(\phi_h + \phi_S)}(x, z, P_T) \propto \mathbf{S}_T \frac{\sum_{q, \overline{q}} e_q^2 \delta q(x, k_t) \otimes H_1^{\perp}(z, p_t)}{\sum_{q, \overline{q}} e_q^2 q(x, k_t) \otimes D_1(z, p_t)}$

Latest SIDIS Collins data

- Final Collins asymmetries of HERMES and COMPASS (<2017) published, including kaons
- More deuteron available by COMPASS (see next slides)
- Transverse target data expected from JLAB in near future

 p^{h}_{-} (GeV/c)

Belle Collins asymmetries

- Red points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over like sign pion pair ratio : A^{UL}
- Green points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over any charged pion pair ratio : A^{UC}
- Collins fragmentation is large effect
- Consistent with SIDIS indication of sign change between favored and disfavored Collins FF

10

Transverse momentum

- Add transverse momentum to Collins asymmetries' z dependence
- Currently only 1 or 2-dimensional extractions available (q_t, z₁x z₂, p_{t1}x p_{t2}, z₁xp_{t1})
- Increasing asymmetries with both z and pt, but pt reach limited
- Multidimensional extractions needed

SIKEN

Transversity in proton collisions

- Nonzero Collins asymmetries (hadron in jets) at central rapidities at 200 and 500 GeV
- Substantial theoretical progress for hadron in jet measurements
 - unpolarized: Kaufmann et al.
 - polarized Kang et al.
- For roughly same x and kt similar size → evolution effects moderate?
- But generally slightly larger than global fits from SIDIS/e+e-
- More to come from sPHENIX in near future

STAR: Phys.Rev.D 106 (2022) 072010, 2022

RIKEN

x = 0.1

Anselmino et al. *Eur. Phys. J.A* 39 (2009) 89

 $-Q^2 = 2.4 \text{ GeV}^2$

0.06

Sivers Function measurements

- Early fits of SIDIS data show opposite signs, d quarks possibly larger
- Recent updates including evolution higher orders, and STAR W data

(2021) 112002

 $f_{1T,q}^{\perp}(x,k_T)$

New COMPASS deuteron data

 xh_1

Ralf Sei

COMPASS 2401.00309

- Old COMPASS μ+d data consistent with zero due to cancellations (Collins + transversity, u and d Sivers)
- Larger statistics show slightly negative Collins asymmetries for h⁺
- Improved sensitivity to d quarks compared to e+p → d transversity negative

VM Collins asymmetries

PLB 843 (2023) 137950

- Interesting to look also to VM production for TMD measurements
- Especially in Collins case expect opposite sign to same charge PS meson in Artru model
- Sivers asymmetries should be similar to PS mesons
- ρ asymmetries consistent with expectations

RIKEN

Sivers Sign change

COMPASS: polarized NH₃ target + 160 GeV π^- beam \rightarrow Sensitivity to u quark Sivers and sign change

solenoid

dilution

 $f_{1T,q}^{\perp DY}(x,k_T) \stackrel{!}{=} -f_{1T,q}^{\perp DIS}(x,k_T)$

COMPASS 2312.17379 Now a rather clear indication of the sign

Total

. Vais

Continuum 💵

Combinatorial Bkg

M_{uu} (GeV/c²)

DY + oper

decays +

ba

Р

change!

16

Transverse momentum dependent cross sections for pions, kaons and protons \rightarrow TMD FFs

Important baseline for most transverse momentum/spin dependent measurements at RHIC and EIC

RIKEN Press release: https://www.riken.jp/press/2 019/20190615 1/

SIKEN

TSSAs at RHIC→Quark-gluon dynamics!

- Sivers and Collins effects rely on an explicitly transverse momentum dependent (TMD) framework where two scales are observed: high scale (typically Q²) and intermediate scale (transverse momentum $P_T << Q^2$)
- In inclusive pp measurements usually only one, hard scale accessible (transverse momentum P_T)
- → requires higher Twist, collinear framework, contributions are multi-parton correlators (both in initial state and final state)
- Both frameworks found to be related via moments over intrinsic transverse momenta

q-g correlation (↔ quark Sivers)

 $p^{\uparrow}(p)$

 $(x_2 - x_1)p^+$

 $p^{\dagger}(p)$

g-g correlation (trigluon ↔ gluon Sivers)

q-g FF correlation (\leftrightarrow Collins)

 P_h, S_h

 P_h/z

5/16/2024

Single spin asymmetry contributions in p+p

FS particle FF* pol proton PDF* unpol proton PDF*

a.b.c $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}^{(3)}(x'_1,x'_2) \otimes D_{c \to C}(z)$ a,b,c

 $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}(x') \otimes D^{(3)}_{c o C}(z_1,z_2)$ a,b,c

> a,b/c initial/final parton flavors A,B/C initial/final hadron/particle types

Efremov, Teryaev Phys.Lett.B 348 (1995) 577 Qiu, Sterman Phys. Rev. D 59 (1999) 014004 Kanazawa, Koike Phys.Lett.B 478 (2000) 121-126 Metz, Pitonyak Phys.Lett.B723 (2013) 365-370

 $\sum \phi_{a/A}^{(3)}(x_1, x_2, s) \otimes \phi_{b/B}(x') \otimes D_{c \to C}(z)$ • Generally three pieces to p+p single transverse spin asymmetries:

- Twist three correlation functions (quarks or gluons) in polarized proton \leftrightarrow Sivers function
- Twist three correlation function in unpolarized proton (with transversity) \leftrightarrow Boer Mulders function
- Twist three correlation in fragmentation ↔ Collins function

Different final states single out different contributions (via hard processes)

19

5/16/2024

 A_N

+

First direct photon A_Ns

- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluon-gluon correlation functions
- Power to constrain gluon-gluon correlation function well, since quark impact expected to be small

RIKEN Press release: <u>https://www.riken.jp/press/</u> 2021/20211015_1/index.html

BNL Press release:

https://www.bnl.gov/newsroom/news.php?a=119077

PRL 127 (2021) 162001

20

Heavy Flavor electron A_Ns PRD 107 (2023) 052012.

- Almost only gluon related, no final state effects → tri-gluon correlation
- Potential to constrain parameter ranges in D meson A_N theory calculations: <u>PRD78</u>, 114013 (Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan)
- Comparison or charges provides further sensitivity

RIKEN

Forward eta A_Ns

- Update of forward η A_N measurements with better statistics
- Asymmetries sizeable, maybe a hint of turnaround expected at higher p_T due to HT nature of asymmetries

Ralf Seidl: TMDs

Diffractive contributions?

- Both single diffractive and rapidity gap events show asymmetry comparable to inclusive asymmetry
- To compensate for small contribution of diffractive events to inclusive events asymmetry had to be much larger
- Conclusion: Diffractive events are not main cause for nonzero ANs

STAR forward EM-"jet" ANs

SIKEM

Where to go from here? Global fits on transverse quark-gluon structure

Cammarota et al, PRD 102 (2020) 054002

RHIC, SIDIS, DY included

- Recent central rapidity PHENIX results (π,η,Heavy flavor electons, direct photons) not yet included
- Impact on gluon Sivers function (tri-gluon correlator) expected

What to expect before EIC?

- Significantly more SIDIS data from JLAB (Collins, Sivers, Dihadrons, unpolarized), high-x and low scale
- More updates from RHIC on Collins asymmetries (hadron-injet)
- More Fragmentation information from Belle(II) – unpolarized, HF, VMs, etc

- Sea quark Sivers from SpinQuest (polarized fixed-target DY)
- More high-scale unpolarized data from LHC

25

EIC TMD Goals: 3D Transverse spin and momentum

structure

Deliverables	Observables	What we learn	Stage I	Stage II
Sivers &	SIDIS with	Quantum	3D Imaging of	3D Imaging of
unpolarized	Transverse	Interference $\&$	quarks	quarks & gluon;
TMD quarks	polarization;	Spin-Orbital	valence+sea	$Q^2 (P_{hT})$ range
and gluon	di-hadron (di-jet)	correlations		QCD dynamics
Chiral-odd	SIDIS with	3 rd basic quark	valence+sea	$Q^2 (P_{hT})$ range
functions:	Transverse	PDF; novel	quarks	for detailed
Transversity;	polarization	hadronization		QCD dynamics
Boer-Mulders		effects		

Tables from original EIC white paper

Current data for Sivers asymmetry:

HERMES π^{0,±}, K[±]: P_{hT} < 1 GeV, 0.2 < z < 0.7
JLab Hall-A π[±]: P_{hT} < 0.45 GeV, 0.4 < z < 0.6

COMPASS h^{*}: P_{bT} < 1.6 GeV, z > 0.1

10

10

Q² (GeV²)

Planned:

JLab 12

10-4

Current coverage for transverse spin related SIDIS measurements

10 -2

10 -3

5/16/2024

Ralf Seidl: TMDs

10⁻¹

26

Scale dependence (and interplay of collision energies)

- An example of the expected uncertainties in x and Q² to study the scale dependence of the Sivers/Collins asymmetries (as TMD evolution is not very well known/contains other nonperturbative pieces)
- Overlap of the different energies shows how they increase the lever arm
- Note: in future evolution analysis likely more Q² bins and maybe not as fine x binning

27

RIKEN

Impact for Sivers functions

Ralf Seidl: TMDs

- Similar to YR impact studies following the latest BPV global fit (arXiv:2103.03270) for the Sivers function based on the existing SIDIS +DY data
- Uncertainties are shown for current level of knowledge on up/down Sivers functions at various x vs kt and expected impact from ePIC

Tensor charge impact

- Similar to <u>Gamberg et al</u> <u>Phys.Lett.B 816 (2021) 136255</u>
 (for YR) use fitting code from latest global fit Cammarota et al arXiv:2002.08384 to extract
 impact on Transversity, Collins functions and tensor charges
- Together with projected JLAB12 data precision to compare with Lattice results (and check for possible discrepancies)

NIM.A 1049 (2023) 168017

About TMD evolution

Moos et al. https://arxiv.org/abs/2305.07473

- Large theoretical effort to understand TMD evolution (see for example Evolution and REF workshop series)
- Large overlap with low-x community
- Despite predominantly using CSS formalism large differences due to treatment of non-perturbative terms in evolution \rightarrow relevant for many spin related TMDs
- Data needed to pin down TMD evolution

RIKEN

z-dependence of multiplicities and widths

- Top: Explicit z dependence of select pion multiplicities in 3 x-Q² bins, including the double-Gaussian fits
- Bottom: behavior of the narrow Gaussian widths vs z for pions, kaons and protons
- Small z discrepancies likely due to target fragmentation

RIKEK

Impact for unpolarized TMD functions

- Similar to YR impact studies following the latest SV global fit (<u>https://arxiv.org/abs/1912.065</u>
 32) for the unpolarized TMDs based on the existing SIDIS +DY data
- Consistent with Yellow Report expected impact

NIMA 1055 (2023) 168458

Simple impact on TMD evolution and unpol TMDs

Impact on unpolarized TMDs at lower x, nonperturbative part of evolution and fragmentation functions expected from unpolarized TMD measurements

YR

RIKEN

Summary

- TMDs play a role from relatively low energies up to Higgs energies
- They particularly allow to access the full spin structure
- Some knowledge on unpol. TMDs, Sivers function and Transversity but many uncertainties still

- EIC data will improve on these TMDs in great detail
- Particular interest on TMD evolution which is still poorly understood
- Previous YR/ECCE/ATHENA impact studies are being revisited with more realistic ePIC simulations

