

Experimental search for gluon saturation at STAR

Xiaoxuan Chu, BNL CFNS workshop, May 16th 2024

From Quarks and Gluons to the Internal Dynamics of Hadrons, May 15 – 17, 2024 Center for Frontiers in Nuclear Science, Stony Brook University

Gluon saturation

- Gluon density rapidly increases at small x: gluon splitting → linear evolution
- Nonlinear gluon effect: gluon recombination → nonlinear evolution
- Gluon saturation (Q²<Q²_s): gluon recombination = gluon splitting
- It's easier to access saturation region in heavy nuclei than nucleon:

 $Q_s^2 \propto A^{1/3} (1/x)^{\lambda}$

Di-hadron measurement in d+Au

- **CGC** successfully predicted the strong **suppression of the hadron inclusive yields** in d+Au relative to p+p, by gluon saturation effects
- **Di-hadron** as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. McLerran from NPA 748 (2005) 627-640

Deletion of away-side peak in d+A relative to p+p as saturation feature:

- Suppression
- Broadening

• Following theoretical predictions on di-hadron:

C. Marquet in NPA 796, 41 (2007)

Saturation signatures on p_T and y

x (and Q^2) scanned by varying p_T and y

Saturation signatures on b and A

 $Q_s \propto T_A(b) \propto 1/b, T_A(b)$ is Woods-Saxon potential: smaller b, larger $Q_s \rightarrow$ easier to reach saturation region

 $Q_s \propto A^{1/3}$: Larger A, larger $Q_s \rightarrow$ easier to reach saturation region

 Q_s scanned by varying **b** and **A**

CFNS workshop: Internal Dynamics of Hadrons

Can we observe the nonlinear gluon dynamics signatures from recent STAR p+p, p+A, and d+A data?

- p+p, p+Al, and p+Au collisions: STAR, PRL 129, 092501 (2022)
 - d+Au collisions: STAR preliminary results

STAR data in $x - Q^2$ phase space

STAR data can access linear-nonlinear transition region

$Di-\pi^0$ measurement at STAR

CFNS workshop: Internal Dynamics of Hadrons

p_T , E.A. and A dependence

Precision calculation needed for saturation

Quark Matter 2023, talk by H. Mantysaari

Color Glass Condensate at precision level

CGC calculations are now entering the NLO era ($lpha_{
m s} \ln 1/x \sim {\cal O}(1)$, NLO = $lpha_{
m s}^2 \ln 1/x$)

- Heavy quark production (Hanninen et al, 2022)
- Exclusive J/ ψ , ρ , ϕ , Y (Penttala, H.M, 2022)
- Hadron production in pA (Shi et al, 2021; H.M, Tawabutr, 2023)
- Dihadron correlations in DIS (Caucal et al 2023) *Not the full lists*
- STAR observed A dependence but not the predicted angular broadening phenomena, why?
- High precision calculation from the saturation model is needed for the puzzle of broadening: LO \rightarrow NLO

Potential modifications to the current-predicted correlation function with precision calculation

How about broadening in simulation?

L. Zheng et al., PRD 89 (2014) 074037

0.30

0.65

1.00

• Different dominate effects lead to a broad away/nearside peak; use near-side peak to calibrate $k_T + IS$

 $k_T + IS + FS$

 $k_T + IS + FS + p_T^{\text{frag}}$

0.72

0.81

1.00

How about the simulations at RHIC?

- Saturation implemented in simulation by parameterizing intrinsic $Q_S \sim k_T$: at RHIC energy, for proton: $k_T \cong 0.5 \ GeV/c$; for Au: $k_T \leq 0.9 \ GeV/c$
- Preliminary simulation studies: with intrinsic k_T , PS, and p_T^{frag} turned on, away-side width stays unchanged at $k_T > 0.5 \ GeV/c$, broadening is not expected to occur in p+Au compared to p+p; explanation for the experimental results?

Future measurements with STAR Forward Upgrade

Detector	pp and pA	AA
ECal	~10%/VE	~20%/√E
HCal	~50%/VE+10%	
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>

STAR Forward Upgrade: $2.5 < \eta < 4$

Three new systems:

- Forward Silicon Tracker (FST)
- 2 Forward sTGC Tracker (FTT)
- 3 Forward Calorimeter System (FCS)

STAR data with forward upgrade

$\sqrt{s_{NN}}$ [GeV]	Species	Year
508	p+p	2022
200	p+p	2024
200	Au+Au	2023 and 2025

It's possible to take **pAu** in the last 2 years of RHIC Run!

To explore nonlinear gluon dynamics with expanded observables beyond π^0s :

- Di- h^{\pm} : access lower p_T down to 0.2 GeV/c
- Di-jet: $p_T^{jet} > 5 \text{ GeV}/c \rightarrow \text{higher } x \text{ and } Q^2$
- Direct photon: $q+g \rightarrow q+\gamma$; statistic driven

Xiaoxuan Chu

CFNS workshop: Internal Dynamics of Hadrons

Di-h correlation projections with 2024/2025 data

- **Run24/25 di**- π^0 projection: Best statistic of 2024 (28 Cryo weeks) indicates ~35% reduction of the statistical error compared to 2015 data.
- **Run24/25 di-** h^{\pm} **projection**: Higher statistic than di- π^0 ; $\geq 80\%$ reduction of the statistical error compared to 2015 data; the strongest suppression expected at the lowest p_T where forward upgraded detectors can probe.

Do we observe the nonlinear gluon dynamics signatures from recent STAR p+p, p+A, and d+A data?

- p+p, p+Al, and p+Au collisions: STAR, PRL 129, 092501 (2022)
 - d+Au collisions: STAR preliminary results

PHENIX d+Au data

PHENIX, PRL 107, 172301 (2011)

- Away-side correlation: suppression dependence on rapidity and centrality was observed by PHENIX
- **Pedestal**: high pedestal in d+Au, PRD 83, 034029 (2011) \rightarrow double parton interactions (DPS) in d+Au, can affect the correlation?
- Motivation of performing the similar measurement at STAR → Impact of DPS in d+Au; complementary studies

DPS in d+Au?

M. Strikman and W. Vogelsang, PRD 83, 034029 (2011)

Comparison of p+p, p+Au and d+Au \rightarrow study the individual source of DPS

- Compare pedestal: DPS provides an explanation of higher pedestal in d+Au
- Compare away-side correlation → window open to studies of double parton distributions in nucleons:
 - q₁,q₂ correlated: DPS enhances the correlation
 - q₁,q₂ uncorrelated: DPS will only enhance pedestal

p+p, p+Au and d+Au comparison

- π^0 PID: much higher background in d+Au than p+p (Au)
- Very high pedestal: d+Au > 5 times higher than p+p (Au)
- Much larger combinatorial background in d+Au than p+p (Au)

What's next for d+Au?

Neutron-tagging with STAR ZDC:

Zero Degree Calorimeter (ZDC)

ZDC in the forward direction: $\eta > 6.3$

Correlation measured in two channels:

- 1. Inclusive channel
 - Either proton or neutron enters, or both enter the hard scattering – completed
- 2. Neutron-tagged in the forward direction
 - Proton enters the hard scattering

 ongoing

Aim at understanding the contribution from DPS to the pedestal and correlations

Conclusion for theory

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - DPS in d+Au: both pedestal and correlation affected?
 - LO \rightarrow NLO predictions needed

Conclusion for STAR

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - DPS in d+Au: both pedestal and correlation affected?
 - LO \rightarrow NLO predictions needed
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - Large background correlation not fully understood ongoing efforts, stay tuned; favors cleaner p+Au collisions
 - For DPS physics: favors di-charged hadron correlation in p+p, p+A, and d+A

Clarifications

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - DPS in d+Au: both pedestal and correlation affected?
 - LO \rightarrow NLO predictions needed
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - Large background correlation not fully understood ongoing efforts, stay tuned; favors cleaner p+Au collisions
 - For DPS physics: favors di-charged hadron correlation in p+p, p+A, and d+A
- Background contribution cannot be ignored from the data, be careful with predictions and experimental results based on the results in d+Au collisions

Outlook

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - DPS in d+Au: both pedestal and correlation affected?
 - LO \rightarrow NLO predictions needed
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - Large background correlation not fully understood ongoing efforts, stay tuned; favors cleaner p+Au collisions
 - For DPS physics: favors di-charged hadron correlation in p+p, p+A, and d+A
- Background contribution cannot be ignored from the data, be careful with predictions and experimental results based on the results in d+Au collisions
- Di-charged hadron correlation with STAR Froward Upgrade and EIC:
 - Cleaner PID than π^0 ; lower p_T acceptance stronger signal expected
 - Near-side peak can be studied: used to calibrate effects from IS, FS and fragmentation p_T?
 - pp, pA and ep, eA complementarity and universality