Exploring Meson Structures from Lattice QCD Qi Shi BNL & CCNU

In collaboration with H.-T. Ding, X. Gao, A.D. Hanlon, S. Mukherjee, P. Petreczky, S. Syritsyn, R. Zhang and Y. Zhao

From Quarks and Gluons to the Internal Dynamics of Hadrons

- - based on arXiv: 2404.04412
- - in preperation

Outline

Electromagnetic Form Factor (EMFF) of Pion and Kaon

Pion Light-cone Generalized Parton Distribution (GPD)

Motivation

EPJA 48 (2012) 187 JPG 48 (2021) 075106 arXiv: 2102.09222 - Experiment: JLab, EIC, EicC ...

Gao et al., PRD 96 (2017) 034024

- Effective theory: QCD sum rules, DSE ...
- Lattice QCD: first principle

PRD 96 (2017) 114509 ETMC, PRD 105 (2022) 054502

O State-of-the-art: $Q^2 \le 6$, 3 GeV²

• This work: Q^2 up to 10, 28 GeV²

Motivation

Low
$$Q^2$$
: Vector Meson Dominance
 $r_{\text{eff}}^2(Q^2) = 6[1/F_{\pi}(Q^2) - 1]/Q^2$
 $\langle r_{\pi}^2 \rangle = 0.42(2) \text{ fm}^2, \quad \langle r_{\pi}^2 \rangle_{PDG} = 0.434(5) \text{ fm}^2$

High Q^2 : Factoriation framework

$F(Q^2) = \iint dx dy \Phi^*(x, \mu_F^2) T_H(x, y, Q^2, \mu_R^2, \mu_F^2) \phi(y, \mu_F^2)$ **Distribution amplitude**

4

He How to get the form factor on the lattice

 $C_{2pt}(t,\vec{p}) = \left\langle H(t_s,\vec{p})H^{\dagger}(0,\vec{p}) \right\rangle$

 $R^{fi} \sim C_{3pt} / C_{2pt} \xrightarrow{t_s \to \infty}$ $F^B = \left\langle E_0, \vec{p}^f | \hat{\mathcal{O}}_{\gamma^{\mu}}(\tau, \vec{q}) | E_0, \vec{p}^i \right\rangle$

Bare Form factor

 $F(Q^2) = F^B \times Z_V^{-1}$ $(Q^2 = -t)$

H Bare Form Factor

Bare form factor $F^B \times Z_V^{-1} = F(Q^2)$

HF Electromagnetic Form Factor

Hard-process kernel $F(Q^{2}) = \iint dx dy \Phi^{*}(x, \mu_{F}^{2}) T_{H}(x, y, Q^{2}, \mu_{R}^{2}, \mu_{F}^{2}) \phi(y, \mu_{F}^{2})$ Distribution amplitude

 $F(Q^2 \to \infty) = 8\pi \alpha_s(Q^2) f^2/Q^2$, $Q^2 F/f^2 \sim \text{Constant}$

Lattice (filled symbols): Gao et al., PRD 104 (2021) 114515 F^{π} collaboration: Huber et al., PRC 78 (2008) 045203 DSE (Dyson-Schwinger equation): Gao et al., PRD 96 (2017) 034024 BSE21 (Bethe-Salpeter equation): Ydrefors et al., PLB 820 (2021) 136494 BSE24: Jia and Cloët, arXiv:2402.00285 k_T factorization: Cheng, PRD 100 (2019) 013007 pion: Chai et al., EPJC 83 (2023) 556 kaon: in preparation T_H in the collinear factorization: Chen et al., arXiv:2312.17228

DA in the collinear factorization: see Rui's talk on Friday

- - based on arXiv: 2404.04412
- - in preperation

Outline

Electromagnetic Form Factor (EMFF) of Pion and Kaon

Pion Light-cone Generalized Parton Distribution (GPD)

Motivation

1D

Frame-independent approach

Bhattacharya et al., PRD 106 (2022) 114512 See Martha's talk on Wednesday

• Lorentz-invariant amplitudes A_i 's

 $M^{\mu}(P^{m}u, z^{\mu}, \Delta^{\mu}) = \bar{P}^{\mu}A_{1} + m^{2}z^{\mu}A_{2} + \Delta^{\mu}$

 $z^{\mu} = (0,0,0,z), \ \Delta^{\mu} = (\Delta^{t}, \Delta^{x}, \Delta^{y}, 0).$

 $A_i(\text{sym frame}) \simeq A_i(\text{asym frame})$

• Lorentz-invariant quasi-GPD $\tilde{H}_{\rm LI}$ $\tilde{H}_{\text{LI}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) = A_1 + \frac{z \cdot \Delta}{z \cdot \bar{P}} A_3$

 $A_3(-z \cdot \Delta) = -A_3(z \cdot \Delta) \implies A_3(z \cdot \Delta = 0) = 0$

Calculate in the asymmetric frame

Save computational cost

$${}^{\mu}A_{3}, \quad \bar{P}^{\mu} = (p_{f}^{\mu} + p_{i}^{\mu})/2, \quad \Delta^{\mu} = p_{f}^{\mu} - p_{i}^{\mu}.$$

H Bare matrix elements M^B

- Largest momentum: $P_z = 1.937$ GeV,
- Varying different momentum transfer -t

$$\left.\begin{array}{c}z\uparrow\\-t\uparrow\end{array}\right\}M^B\downarrow$$

Quasi-GPDs

11

Renormalization: Hybrid scheme

- RI/MOM, ratio schemes short distance
- Hybrid scheme

Logarithmic He

$$M^{B}(z, a) = Z(a)e^{-\delta m(a)|z|}e$$

Linear

$$z \leq z_S$$
:

$$z \ge z_S$$
:

Hybrid scheme, M^R

Ji et al., NPB 964 (2021) 115311

both short and long distance

andle the renormalon ambiguity $-\bar{m}_{0}|z|M^{R}(z)$.

Gao et al., PRL 128 (2022) 142003

 $\frac{M^{R}(z,\vec{p},\vec{q})}{M^{R}(z,0,0)} = \frac{M^{B}(z,\vec{p},\vec{q})}{M^{B}(z,0,0)}, \quad \text{Ratio scheme}$

 $\frac{M^{R}(z, \vec{p}, \vec{q})}{M^{R}(z, \vec{p}, \vec{q})} = e^{(\delta m + \bar{m}_{0})|z - z_{S}|} \frac{M^{R}(z, \vec{p}, \vec{q})}{M^{R}(z, \vec{p}, \vec{q})}$ $M^{R}(z_{S}, 0, 0)$ $M^{B}(z_{S}, 0, 0)$

Hybrid-scheme

- $a\delta m(a) = 0.1508(12)$ for a = 0.04 fm lattice.
- \bar{m}_0 : M^B at $P_z = 0$, $\vec{\Delta} = \vec{0}$; $e^{(\delta m + \delta m)}$

 C_0 : NNLO,

Leading-Renormalon Resummation, Renormalization Group Resummation $(\mu_0 = 2\kappa e^{-\gamma_E}/z \rightarrow \mu = 2 \text{ GeV})$

Gao et al., PRL 128 (2022) 142003 tice.

Renormalization

$$H(x,t) = \int \frac{dk}{|k|} \int \frac{dy}{|y|} C_{\text{evo}}^{-1} \left(\frac{x}{k}, \frac{\mu}{\mu_0}\right) C^{-1} \left(\frac{k}{y}, \frac{\mu_0}{yP_z}, |y|\lambda_s\right) \tilde{H}(y, P_z, t, z_s, \mu_0) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(xP_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{[(1-x)P_z]^2}\right)$$

$$\textbf{IC GPDs}$$

$$\textbf{quasi-GPDs}$$

W Valence LC GPDs: -t-dependence

• Scale variation (lighter filled bands): -0.15 < x < 0.3

 \mathcal{X}

Valence LC GPDs: x-dependence

Summary

- Pion and kaon EMFF at the physical point
 - -t up to 10 and 28 GeV² for the pion and kaon
 - Consistent with the existing experimental results
 - Consistent with the collinear factorization results when -t > 5 GeV²
- Pion LC GPD in the asymmetric frame
 - Hybrid-scheme renormalization
 - Matching with NNLO + LRR + RGR
 - -t, x-dependence of the LC GPDs

Thanks for your attention!

Backup

Extract Energy and Amplitude

Take kaon data as an example

W Valence LC GPDs: *z_s*-dependence

W Valence LC GPDs: P_z -dependence

Valence LC GPDs: Order-dependence

 $Q^2 = -t$ increases

NNLO: better perturbative convergence

Order-dependence reduces

Impact-parameter dependent parton distributions

$$H_b(x,b) = \int rac{\mathrm{d}^2 \mathbf{q}_\perp}{(2\pi)^2} H(x,\xi=0,\mathbf{q}_\perp^2) e^{i\mathbf{b}_\perp\cdot\mathbf{q}_\perp}$$

In Impact-parameter dependent parton distributions

- 0.3

- 0.2

0.1

