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Abstract

Experimentally, hadron structure functions are extracted from the
forward and off-forward Compton amplitudes. On the other hand,
theoretical calculations are limited to Euclidean space-time. The
closest one can come to exploiting the full potential of the EIC is
to compute the Compton amplitude on the lattice in full diversity.
In this talk I will discuss the challenges and the potential of this
approach and present some recent highlights of the calculations
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QCDSF Collaboration



✎

✍

☞

✌Introduction

The long-term objective is to compute hadron structure functions from first principles,
overcoming the limitations of light-cone PDFs and the OPE

The structure of hadrons revealed by deep-inelastic scattering is characterized
completely by the virtual Compton amplitude

Tµν = ρss′

∫

d4x ei(q+q′)x〈p, s|T [JV,A
µ (x)JV,A

ν (0)]|p′, s′〉

of vector (JV
µ = q̄γµq) and axial vector currents (JA

µ = q̄γ5γµq), with incoming
momenta q, q′ sandwiched between states of momenta p, p′ and polarization s, s′

In this talk I will briefly discuss the theoretical foundation and challenges of the
approach and highlight present results across a range of kinematics
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Forward Compton amplitude

Tµν(p, q) = δµνF1(ω, q
2) +

pµpν
pq

F2(ω, q
2) + iǫµνρσ

pρpσ
2pq

F3(ω, q
2)

+ ǫµνλσqλsσ
1

pq
G1(ω, q

2)+ǫµνλσqλ (pq sσ−sq pσ)
1

(pq)2
G2(ω, q

2)

F2(ω, q
2) = 4ω

∫ 1

0

dx
F2(x, q

2)

1− (ωx)2
= 4

∑

n=1,2,···

ω2n−1

∫ 1

0

dxx2n−2F2(x, q
2)

= 4
∑

n=1,2,···

ω2n−1M
(2)
2n (q2)

F3(ω, q
2) = 4ω

∫ 1

0

dx
F3(x, q

2)

1− (ωx)2
= 4

∑

n=1,3,···

ω2n−1

∫ 1

0

dxx2n−2F3(x, q
2)

= 4
∑

n=1,3,···

ω2n−2M
(3)
2n−1(q

2)



G1(ω, q
2) = 4ω

∫ 1

0

dx
g1(x, q

2)

1− (ωx)2
= 4

∑

n=1,3,···

ωn

∫ 1

0

dxxn−1g1(x, q
2)

G2(ω, q
2) = 4ω

∫ 1

0

dx
g2(x, q

2)

1− (ωx)2
= 4

∞
∑

n=1,3,···

ωn

∫ 1

0

dxxn−1g2(x, q
2)

JV
µ JA

ν Q2 ≈ 4GeV2

Moments

– Polynomial fit

Structure functions

– Singular value decomposition

– 2nd kind Fredholm equation

– Bayesian techniques

– Analytical parameterization
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Feynman-Hellmann

The Compton four-point amplitude can be computed most efficiently from the
Feynman-Hellmann relation by introducing the perturbation to the action, e.g.

S → S + λ1

∫

d4x cos qx JV
µ (x) + λ2

∫

d4x sin qx JA
ν (x)

Taking the derivative of the hadron two-point function with respect to λ1 and λ2 we
obtain

∂2E(p, q)

∂λ1∂λ2

∣

∣

∣

∣

λ1,2=0

= i
T[µν](p, q)

E(p, q)

Three-point function
∂E(p, q)

∂λ

∣

∣

∣

∣

λ=0
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Off-forward Compton amplitude

Focus on zero skewness

q q
′

p p
′

inherently non-
perturbative

Tµν(p̄, q̄,∆) = δµν

(

ū(p)/̄qu(p′)

2p̄q̄
H(ω̄, t, q̄2)+

ū(p) q̄ρiσρσ∆σu(p
′)

2mN

E(ω̄, t, q̄2)
)

+ · · ·

H̄(ω̄, t, q̄2) = 2ω̄2

∫ 1

0

dx
H(x, t, q̄2)

1− (ω̄x)2
= 2

∑

1,2,···

ω̄2nA2n(t, q̄
2)

H(x, 0, q2)=2xF1(x, q
2)

GFF

A2n(0, q
2) ≃ 〈x2n−1〉



Impact para-
meter space

H(x, t, q̄2) ⇒ 3D structure

An(t, q̄
2) ⇒ 2D structure 2nd vs 1st order FH: higher twist
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Moment M
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Gluon distribution function is derived from
radiative decay of quark PDFs at very low Q2

and evolved perturbatively to collider energies

GRV
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Higher twist effects

Higher twist effects become more and more
visible as the accuracy of the data increases.
While operators of leading twist probe the
light cone, higher twist effects reflect the
internal motion of quarks and gluons

– Have no partonic interpretation

– Generated by transverse motion

– Window to long-distance physics

– Test of renormalon approach

M(Q2) = c2(Q
2/µ2) 〈p|O2(µ)|p〉+

c4(Q
2/µ2)

Q2
〈p|O4(µ)|p〉

Particularly suited: Gross–Llewellyn-Smith sum rule

M
(3)
1 (Q2) = c2(Q

2/µ2) Nq +
c4(Q

2/µ2)

Q2
〈p|O4(µ)|p〉 , Nq number of quarks

NNLO Larin & Vermaseren



Consider M
(3)
1 with uu-insertion
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To lowest order of c4

M
(3)uu
1 (Q2) = c2(Q

2/µ2) 2 + c4
µ2

Q2
c4 = 0.51± 0.06GeV2

Matched to be independent of renormalization scale µ genuine HT



✎

✍

☞

✌Twist 3

The spin-dependent structure function g2 receives contributions from twist-2 and
twist-3 operators, offering the unique possibility of directly accessing higher twist
effects

The twist-3 contribution

d2 =

∫ 1

0

dxx2 (3 g2(x, q
2) + 2 g1(x, q

2))

can be identified with the transverse force acting on the active quark of a transversely
polarized nucleon

F y(0) =
1√
2P+

〈

p, s|q̄(0)γ+G+yq(0)|p, s
〉

= −
√
2mNP+Sx d2

OPE Burkardt



Physical interpretation as a force

In electromagnetism the Lorentz force acting on a particle moving with ≈ speed of
light in −z direction is given by

F y = [ ~E + ~v × ~B]y = [Ey −Bx] = −
√
2G+y

Thus, d2 can be identified with the transverse component of the color-Lorentz force
acting on the struck quark in deep-inelastic scattering in the instant it has been hit
by the virtual photon

In order to develop a 2D picture of the force, the generalization to off-forward
kinematics is in order

F i
ss′(∆⊥) = − 1√

2P+

〈

p+,
∆⊥

2
, s|q̄(0)γ+G+iq(0)|p+,−∆⊥

2
, s′

〉

= ū(p, s)
[

P+∆iγ+Φ1(t) + P+mNiσ+iΦ2(t) +
P+∆i

mN

iσ+∆Φ3(t)
]

u(p′, s′)

Aslan, Burkardt & Schlegel



In impact parameter space

F i
ss′(b) =

∫

d2∆⊥

(2π)2
eib∆⊥F i

ss′(∆⊥) , Φi(t) =
Φi(0)

(1− t/Λ2
i )

2
Λi from fit of Φ ′

i s

Probability interpretation

Results in three distinct contributions

F i
1(b) = −2

√
2P+biΦ′

1(b
2)

F i
2(b) = m2

nǫ
ijsjΦ2(b

2)

F i
3(b) = −ǫjksk[2δijΦ′

3(b
2) + 4bibjΦ′′

3(b
2)]

Φi(b
2)′s Fourier transforms of Φi(t)

′s Work in nucleon rest frame P+ =
mN√
2



Remember 〈p+, s|q̄(b)σ+iγ5q(b)|p+, s〉 QSDSF

up

→ ⇒

down

→ ⇒
Boer–Mulders effect Sivers effect



Struck up quark

Unpolarized Polarized
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✌3D Structure

H̄(ω̄, t, q̄2) = 2ω̄2

∫ 1

0

dx
H(x, t, q̄2)

1− (ω̄x)2
Q̄2 ≈ 5GeV2
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We are finally interested in

H(x, b2, Q̄2) =

∫

d2∆

(2π)2
eib∆H(x,∆2, Q̄2) inherently nonperturbative

Need analytic expression to assess the spatial
distribution of quarks and gluons

Ansatz derived from dual, Veneziano-type
Compton amplitude resp. light-cone dominated
current commutator

H(x, t, Q̄2) = Ax1−α(t)(1− x)β

Ademollo & Del Giudice
Gatto & Preparata

α(t) = α(0) + α′(0) t , β constant trajectory

t = 0
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α(0) = 0.15 , β = 3.5

effective



Matching MSTW parameterization with Regge ansatz arXiv:0901.0002

xqv(x) = Ax1−a(1− x)b(1 + e
√
x+ gx)

= A (x1−a + ex1−(a−0.5) + gx1−(a−1)(1− x)b

αρ/ω αη αf

Accordingly, we should find

a≈αρ/ω(0) a−0.5≈αη(0) a−1≈αf(0)

The ρ/ω trajectory has been studied the most, which gave αρ/ω(0) ≈ 0.45. The
MSTW parameterization then suggests αη(0) ≈ −0.05 , αf(0) ≈ −0.55, which is in
broad agreement with phenomenology



H̄(ω̄, t, Q̄2) = 2A
∑

n=2,4,···

ω̄n Γ(1 + β)Γ(n− α(t))

Γ(1 + β + n− α(t))
Sums up to 3F2
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F1(t) =
Γ(2 + β − α(0))

Γ(1− α(0))

Γ(1− α(t))

Γ(2 + β − α(t))

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
1
(t
)

−tGeV2

Model
Dipole
Kelly



H(x, b2, Q̄2) =
A

4
√

π log(1/x)
e−z I0(z) x

1−α(0) (1− x)β

z =
b2

8α′(0) log(1/x)

peripheral at x ≈ 0.2
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✌Conclusions

• Our approach is different from the mainstream. Starting point is the all-
comprehensive, forward and off-forward, virtual Compton amplitude

• By working with the physical amplitude, there is no need to resort to the OPE,
facing problems of factorization and renormalization, nor is the calculation bound
to light-cone kinematics

• The computation of the Compton amplitude is made possible by recent advances
in the application of the second-order Feynman-Hellmann theorem

• The emphasis of this talk has been on quantities that are not easily, or not at all,
assessible by standard techniques. First results on higher-twist effects and the 2D
and 3D structure of the nucleon look promising

• To convert experimental and theoretical information on GPDs into an image of the
internal structure of the nucleon, an underlying model must be in place

• Synergies between this approach, covering a wide range of kinematics, and the
Electron-Ion Collider EIC can be expected


