Gravitational form factors from lattice QCD

Dimitra Anastasia Pefkou

CFNS 2024 Stony Brook University

In collaboration with:

[DAP Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]
 [Hackett Oare DAP Shanahan PRD (2023) <u>arXiv:2307.11707</u>]
 [Hackett DAP Shanahan <u>arXiv:2310.08484</u>]
 [Abbott et al, in preparation]

Dan Hackett FNAL 1+2+3+4

Fernando Romero-Lopez MIT

Phiala Shanahan MIT 1+2+3+4

Ryan Abbott MIT

Patrick Oare MIT

Julian Urban MIT

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results

[Hackett Oare **DAP** Shanahan PRD (2023) <u>arXiv:2307.11707</u>] [Hackett **DAP** Shanahan <u>arXiv:2310.08484</u>] [**DAP** Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills

[Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results

[Hackett Oare **DAP** Shanahan PRD (2023) <u>arXiv:2307.11707</u>] [Hackett **DAP** Shanahan <u>arXiv:2310.08484</u>] [**DAP** Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills [Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

Gravitational form factors

Gravitational form factors are the form factors of the energy-momentum tensor $T^{\mu\nu} = -F_a^{\mu\alpha}F_{a,\alpha}^{\nu} + \frac{1}{4}g^{\mu\nu}F_a^{\alpha\beta}F_{a,\alpha\beta} + \sum_f i\bar{\psi}_f\gamma^{\mu}D^{\nu}\psi_f$ # increases with spin $T_a^{\mu\nu}$ $T_a^{\mu\nu}$ • $\langle p', s' | T_i^{\mu\nu} | p, s \rangle$ ~ Kinematic coefficients × Gravitational form factors $\mathcal{G}_i(t)$ T^{00} T^{01} T^{02} T^{03} energy momentum density (Lorentz structure) (scalar functions of $t = -(p' - p)^2$) T^{10} T^{11} T^{12} T^{13} energy flux pressure T^{21} T^{22} T^{23} • $\partial_{\mu}T_{i}^{\mu\nu} \neq 0 \rightarrow \mathcal{G}_{q}(t), \mathcal{G}_{q}(t)$ renormalization scheme and scale dependent shear stress T²³ T³² T³³ momentum flux • $\partial_{\mu}T^{\mu\nu} = 0 \rightarrow \mathcal{G}(t) \equiv \mathcal{G}_{q+q}(t)$ scheme and scale independent

Gravitational form factors encode the distribution of energy, angular momentum, and mechanical properties within hadrons

• Proton: $\langle p', s' | T_i^{\mu\nu} | p, s \rangle \sim A_i(t), J_i(t), D_i(t), \bar{c}_i(t)$ totals: A(0) = 1, $J(0) = \frac{1}{2}$, $\bar{c}(t) = 0$, D(0) = ?momentum angular $T^{\mu\nu}$ ``The last global unknown'' momentum conserved Polyakov Schweitzer 2018

Poincaré symmetry constraints, e.g., $\int d^3x T^{00} |p,s\rangle = m |p,s\rangle$, encoded in $\mathcal{G}(t)$

• Forward limit t = 0: 2nd Mellin moment of parton distribution functions (PDFs) e.g. $\int_0^1 dx \ x \ f_i(x) = A_i(0)$

Constraints on GFFs: examples

* see e.g. Burkert et al Rev.Mod.Phys. 2023 for review

The GFFs have gained increasing interest in recent years, after their first phenomenological extractions

Constraints on GFFs from lattice QCD: examples

Older lattice QCD literature: connected quark momentum fraction and generalized form factors More recently: disconnected contributions to momentum and spin fraction, gluon GFFs

Proton

Pion

∆d: -41(2)%

Other hadronic states?

Understanding the structure of unstable hadrons is possible from lattice QCD

- States unstable under strong interactions: e.g. resonances (rho, delta, etc...)
- Information encoded in GFFs (e.g. gluon momentum fraction, radii from form factors) highly interesting, inaccessible experimentally
- GFFs from Lattice QCD: possible (e.g. Baroni et al PRD 2019) but very challenging
- Consider unphysical quark masses where states are stable
- States outside quark model: e.g. glueballs in Yang Mills

Credit: University of Glasgow

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results

[Hackett Oare **DAP** Shanahan PRD (2023) <u>arXiv:2307.11707</u>] [Hackett **DAP** Shanahan <u>arXiv:2310.08484</u>] [**DAP** Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills [Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

GFFs from lattice QCD: EMT

$$T^{\mu\nu} = -F_a^{\mu\alpha}F_{a,\alpha}^{\nu} + \frac{1}{4}g^{\mu\nu}F_a^{\alpha\beta}F_{a,\alpha\beta} + \sum_f i\bar{\psi}_f\gamma^{\{\mu}D^{\nu\}}\psi_f$$
$$= \sum_{i \in \{q,g\}}T_i^{\mu\nu}$$

• $(T_i^{\mu\nu}$: write in terms of Euclidean lattice fields

$$F_{\mu\nu} \sim (\overrightarrow{D}_{\mu}\psi)(x) = \frac{1}{2} \left(U_{\mu}(x)\psi(x+a\hat{\mu}) - U_{\mu}^{\dagger}(x-a\hat{\mu})\psi(x-a\hat{\mu}) \right),$$
$$(\overline{\psi}\,\overline{D}_{\mu})(x) = \frac{1}{2} \left(\overline{\psi}(x+a\hat{\mu})U_{\mu}^{\dagger}(x) - \psi(x-a\hat{\mu})U_{\mu}(x-a\hat{\mu}) \right),$$

- $T_i^{(\mu\nu)}$: isotropic hypercubic lattice: Lorentz group $\rightarrow H(4)$ symmetric traceless components transform under $\tau_1^{(3)}$ (diagonal), $\tau_3^{(6)}$ (off-diagonal) Gockeler et al PRD 1996
- $T_i^{\mu\nu}$: flavor singlet $q = u + d + s + \cdots$ mixes with gnon-singlet u - d, u + d - 2s renormalize multiplicatively

Lattice simulation

2-point functions ~ $e^{-E_{p}t}$, $E_{p} = \sqrt{m^{2} + |p|^{2}}$

	m_π (MeV)	<i>a</i> (fm)	$L^3 \times T$	N _f
Ens. A	450	0.12	32 ³ × 96	2 + 1
Ens. B	170	0.09	$48^{3} \times 96$	2 + 1

Clover-improved Wilson quarks, Lüscher-Weisz gauge action generated by JLab/LANL/MIT/WM groups

3-point functions ~ Matrix elements $\langle h(p', s') | T_{q,g}^{\mu\nu} | h(p, s) \rangle$

Gluon GFFs of the pion, rho meson, proton, and delta baryon

DAP, Hackett, Shanahan PRD (2022)

	m_π (MeV)	<i>a</i> (fm)	$L^3 \times T$	N _f
Ens. A	450	0.12	$32^3 \times 96$	2 + 1

Clover-improved Wilson quarks, Lüscher-Weisz gauge action generated by JLab/LANL/MIT/WM groups

 \rightarrow 2820 configurations

$$\rightarrow \frac{t_{\text{flow}}}{a^2} = 1$$

 \rightarrow 235 sources

$$\rightarrow |\Delta|^2 \le 18(\frac{2\pi}{L})^2$$

$$\rightarrow |\mathbf{p}'|^2 \leq 10(\frac{2\pi}{L})^2$$

Quark and gluon GFFs

Pion: Hackett, Oare, **DAP**, Shanahan PRD (2023) Proton: Hacket, **DAP**, Shanahan 2310.08484

Connected contribution

$$\rightarrow$$
 1381 configurations

$$ightarrow$$
 sequential sources

→ $t_s \in \{6-18\}$ → $|\Delta|^2 \le 25(\frac{2\pi}{L})^2$ → $p' \in \{(1, -1, 0), (-2, -1, 0), (-1, -1, -1)\}2\pi/L$

- Disconnected contribution
- \rightarrow 1381 configurations
- → Z₄ noise, hierarchical probing, 512 Hadamard vectors
- \rightarrow 1024 sources

$$\Rightarrow |\Delta|^2 \le 25(\frac{2\pi}{L})^2$$

$$\Rightarrow |p'|^2 \le 10(\frac{2\pi}{L})^2$$

	m_π (MeV)	<i>a</i> (fm)	$L^3 \times T$	N _f
Ens. B	170	0.09	$48^{3} \times 96$	2+1

Clover-improved Wilson quarks, Lüscher-Weisz gauge action generated by JLab/LANL/MIT/WM groups

Gluon contribution

 \rightarrow 2511 configurations

$$\rightarrow \frac{t_{\text{flow}}}{a^2} = 2$$

 \rightarrow 1024 sources

$$\Rightarrow |\Delta|^2 \le 25(\frac{2\pi}{L})^2$$

$$\Rightarrow |p'|^2 \le 10(\frac{2\pi}{L})^2$$

Matrix elements \rightarrow bare GFFs

• From 2- and 3-point functions, extract $\langle h(\boldsymbol{p},s) | T_i^{\mu\nu} | h(\boldsymbol{p}',s') \rangle$ for several kinematic combinations $\underline{\boldsymbol{p}'}, \underline{\boldsymbol{\Delta}}, s, s', \mu, \nu$

$$R_{\mu\nu}(\boldsymbol{p}', t_s, \boldsymbol{\Delta}, \tau) = \frac{C_{\mu\nu}^{3\text{pt}}(\boldsymbol{p}', t_s, \boldsymbol{\Delta}, \tau)}{C^{2\text{pt}}(\boldsymbol{p}', t_s)} \sqrt{\frac{C^{2\text{pt}}(\boldsymbol{p}, t_s - \tau)C^{2\text{pt}}(\boldsymbol{p}', t_s)C^{2\text{pt}}(\boldsymbol{p}', \tau)}{C^{2\text{pt}}(\boldsymbol{p}', t_s - \tau)C^{2\text{pt}}(\boldsymbol{p}, t_s)C^{2\text{pt}}(\boldsymbol{p}, \tau)}}$$

Jay Neil PRD 2021

NPLQCD PRL 2015

Rinaldi et al PRL 2019

Model average over Euclidean time ranges

⟨h(p,s)|T_i^{µν}|h(p',s') ~ Coefficients × GFFs (t = Δ²)
 Partition into momentum bins with equal or similar values of t, solve over-constrained linear systems
 → bare GFFs at discrete values of t

Connected contribution: sequential-

Connected contribution: sequential-source through the sink \rightarrow limited p' choose such that GFFs can be resolved

 $au_1^{(3)}$: diagonal elements irrep $au_3^{(6)}$: off-diagonal elements irrep

Pion connected quark contribution

linear summation, summation + exponential, AIC weights Ens. B

Pion gluon contribution

 $-t = 0.13 \text{ GeV}^2$ linear summation, AIC weights Ens. B

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results [Hackett Oare DAP Shanahan PRD (2023) arXiv:2307.11707]

[Hackett DAP Shanahan <u>arXiv:2310.08484]</u> [DAP Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills [Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

ጥ	~	(-(3))		$\tau^{(6)}$))
\mathcal{K}	E	$\{\iota_1\}$,	ι_3	}

Renormalization	m_π (MeV)	<i>a</i> (fm)	$L^3 \times T$	N _f
	450	0.12	$12^{3} \times 24$	2 + 1

$$\begin{pmatrix} T_q^{\overline{\text{MS}}} \\ T_g^{\overline{\text{MS}}} \end{pmatrix} = \begin{pmatrix} Z_{qq\mathcal{R}}^{\text{MS}} & Z_{qg\mathcal{R}}^{\text{MS}} \\ Z_{gq\mathcal{R}}^{\overline{\text{MS}}} & Z_{gg\mathcal{R}}^{\overline{\text{MS}}} \end{pmatrix} \begin{pmatrix} T_{q\mathcal{R}}^{\text{bare}} \\ T_{g\mathcal{R}}^{\text{bare}} \end{pmatrix} : \text{ quark isosinglet and gluon mix under renormalization}$$

- $T_v^{\overline{\text{MS}}} = Z_{v\mathcal{R}}^{\overline{\text{MS}}} T_{v\mathcal{R}}^{\text{bare}}$, $T_v = T_u + T_d 2T_s$: non-singlet does not mix in the chiral limit
- Compute non-perturbatively via the RI-MOM scheme, convert to \overline{MS} scheme at $\mu = 2$ GeV using two-loop matching coefficients (Panagopoulos et al PRD 2021)
- For regular volume ensembles, gluon and disconnected have intractable noise
 → Use smaller volume ensemble to get renormalization factors (different spacing)

$$\begin{pmatrix} Z_{qq\mathcal{R}}^{\overline{\mathrm{MS}}} & Z_{qg\mathcal{R}}^{\overline{\mathrm{MS}}} \\ Z_{gq\mathcal{R}}^{\overline{\mathrm{MS}}} & Z_{gg\mathcal{R}}^{\overline{\mathrm{MS}}} \end{pmatrix}^{-1} (\mu^2) = \begin{pmatrix} R_{qq\mathcal{R}}^{\mathrm{RI}} & R_{qg\mathcal{R}}^{\mathrm{RI}} \\ R_{gq\mathcal{R}}^{\mathrm{RI}} & R_{gg\mathcal{R}}^{\mathrm{RI}} \end{pmatrix} (\mu_R^2) \\ \times \begin{pmatrix} \mathcal{C}_{qq}^{\mathrm{RI}/\overline{\mathrm{MS}}} & \mathcal{C}_{qg}^{\mathrm{RI}/\overline{\mathrm{MS}}} \\ \mathcal{C}_{gq}^{\mathrm{RI}/\overline{\mathrm{MS}}} & \mathcal{C}_{gg}^{\mathrm{RI}/\overline{\mathrm{MS}}} \end{pmatrix} (\mu^2, \mu_R^2)$$

Extraction of renormalization coefficients

Fit $(a\tilde{p})$ dependence due to <u>discretization artifacts</u>, non-perturbative effects, etc.

(inverse) polynomial

Extraction of renormalization coefficients

Fit $(a\tilde{p})$ dependence due to discretization artifacts, <u>non-perturbative effects</u>, etc.

logarithmic

Finally: obtain renormalized GFFs

We have: 1) bare matrix elements $\langle h | T_i^{\mu\nu} | h \rangle$, $i \in \{g, q, \nu\}$ grouped in t-bins for each irrep \mathcal{R} 2) mixing matrix renormalization $\begin{pmatrix} Z_{qq\mathcal{R}}^{\overline{\text{MS}}} & Z_{qg\mathcal{R}}^{\overline{\text{MS}}} \\ Z_{gq\mathcal{R}}^{\overline{\text{MS}}} & Z_{gg\mathcal{R}}^{\overline{\text{MS}}} \end{pmatrix}^{-1}$, non-singlet $Z_{\nu\mathcal{R}}^{\overline{\text{MS}}^{-1}}$ for each \mathcal{R}

 \rightarrow recast into a simultaneous combined-irrep system of equations, solve by linear regression

Beware of d'Agostini bias!

D'Agostini Phys.Res.Sect.A 1994

Fit with 1) multipole : $F_n = \frac{\alpha}{(1 + \frac{t}{\Lambda^2})^n}$, 2) z-expansion : $F = \sum_k \alpha_k [z(t)]^k$ (less restrictive)

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results

[Hackett Oare **DAP** Shanahan PRD (2023) <u>arXiv:2307.11707</u>] [Hackett **DAP** Shanahan <u>arXiv:2310.08484</u>] [**DAP** Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills [Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

Gluon gravitational structure hadrons of different spin $(m_{\pi} \approx 450 \text{ MeV}, \text{mixing neglected})$ DAP, Hackett, Shanahan PRD (2022)

Hadron	π	ρ	Ν	Δ
Spin	0	1	1/2	3/2
GFF #	2	7	3	8

Quark and gluon GFFs of the pion

Pion : total GFFs

Red band spread due to different estimates for low energy constants [Donoghue Leutwyler Z.Phys.C 1991]

Pion data in support of meson dominance principle

Renormalized pion GFFs

Comparison between final results (combined fits to both irreducible representations) and individual irrep fit results

<u>u</u>m<u>d</u>

Renormalized pion GFFs

Comparison between final results (combined fits to both irreducible representations) and individual irrep fit results

Renormalized proton GFFs – comparison with single-irrep fits

 $\overline{\mathrm{MS}}$, $\mu = 2 \ \mathrm{GeV}$

Renormalized nucleon GFFs – comparison to experiments

Burkert Elouardhiri Girod Nature 2018 (DVCS)

Duran et al Nature 2023 (J/ψ) method 1: holographic QCD (Mamo Zahed PRD 2021+2022) method 2: GPDs (Guo Ji Liu PRD 2021)

Guo et al PRD 2023 (+ GlueX data) method 2 updated formula

Nucleon size

Contents of this talk

- Introduction
- Bare gravitational form factors (GFFs) from lattice QCD
- Non-perturbative renormalization
- GFFs of the proton, pion, and other hadrons: selected results

[Hackett Oare **DAP** Shanahan PRD (2023) <u>arXiv:2307.11707</u>] [Hackett **DAP** Shanahan <u>arXiv:2310.08484</u>] [**DAP** Hackett Shanahan PRD (2022) <u>arXiv:2107.10368</u>]

• Bonus: GFFs of scalar glueball at pure Yang-Mills

[Abbott Hackett DAP Romero-Lopez Shanahan Urban, in preparation]

GFFs of Scalar glueball $G [0^+]$ in Yang-Mills

- SU(3) (no dynamical quarks) with $\beta = 5.95$
- $L^3 \times T = 24^3 \times 48$, $a \approx 0.1$ fm
- Lattice ensemble generation algorithm: heatbath + overrelaxation
- $|\Delta|^2 \le 8\left(\frac{2\pi}{L}\right)^2$, $|p'|^2 \le 6(\frac{2\pi}{L})^2$
- 2, 3, 5 steps of stout-smearing
- Current preliminary results ~20M measurements

Abbott, Hackett, **DAP**, Romero-Lopez, Shanahan, Urban in preparation

Glueball comparison with hadron gluon GFFs at $m_{\pi} \approx 450 \text{ MeV}$

(single-interpolator only, more to be added)

Glueball comparison with pion total GFFs at $m_\pi pprox 170~{
m MeV}$

Summary and remarks

- Gravitational form factors: the form factors of the energy-momentum tensor.
- Encode how energy, angular momentum, and mechanical properties are distributed inside hadrons. Moments of GPDs (generalized form factors) and PDFs in the forward limit (e.g momentum fraction).
- Lattice QCD constraints to the GFFs of the pion, proton, ... More results are coming from lattice and experiments!
- Beyond measuring: Much more to understand about the QCD EMT and GFFs

See, e.g., Adam Freese's talk on Thursday

Summary and remarks

- Gravitational form factors: the form factors of the energy-momentum tensor.
- Encode how energy, angular momentum, and mechanical properties are distributed inside hadrons. Moments of GPDs (generalized form factors) and PDFs in the forward limit (e.g momentum fraction).
- Lattice QCD constraints to the GFFs of the pion, proton, ... More results are coming from lattice and experiments!
- Beyond measuring: Much more to understand about the QCD EMT and GFFs See, e.g., Adam

See, e.g., Adam Freese's talk on Thursday

