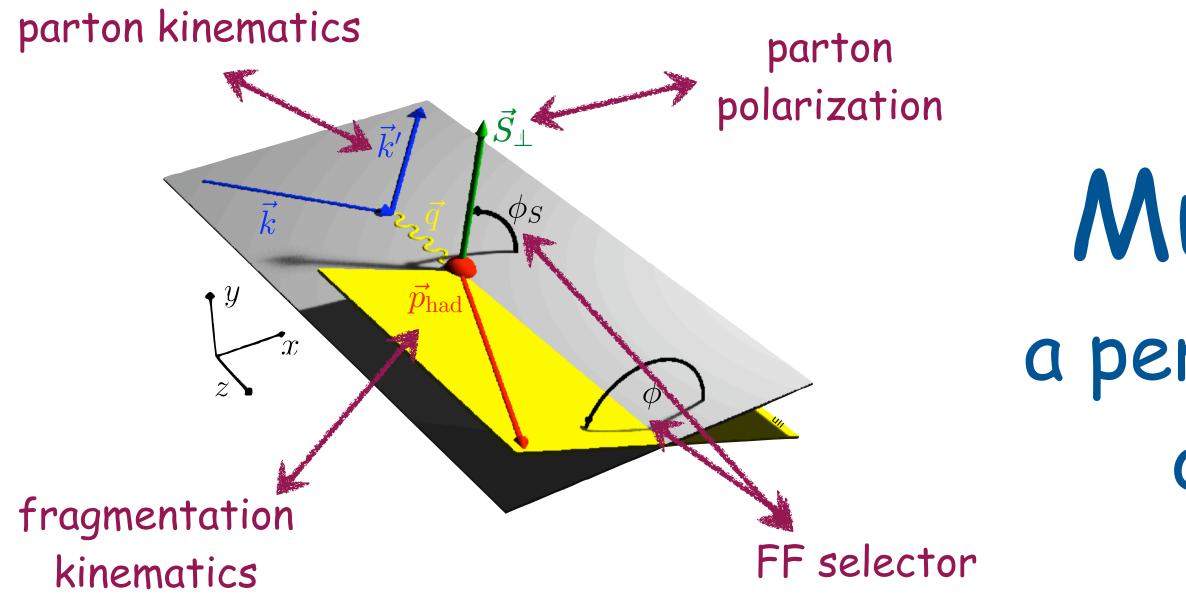
From Quarks and Gluons to the Internal Dynamics of Hadrons CFNS@Stony Brook – May 15-17, 2024



Gunar.Schnell @ DESY.de

Multi-d SIDIS Analyses a personal HERMES-biased perspective on challenges and achievements

disclaimer: after two and a half days of intense

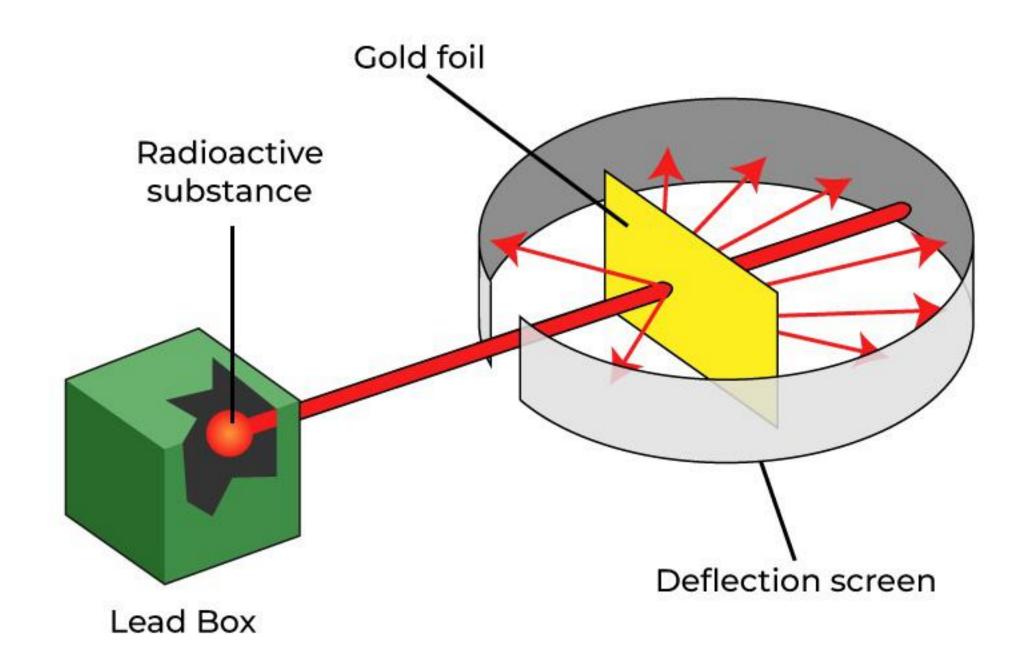
Gunar Schnell

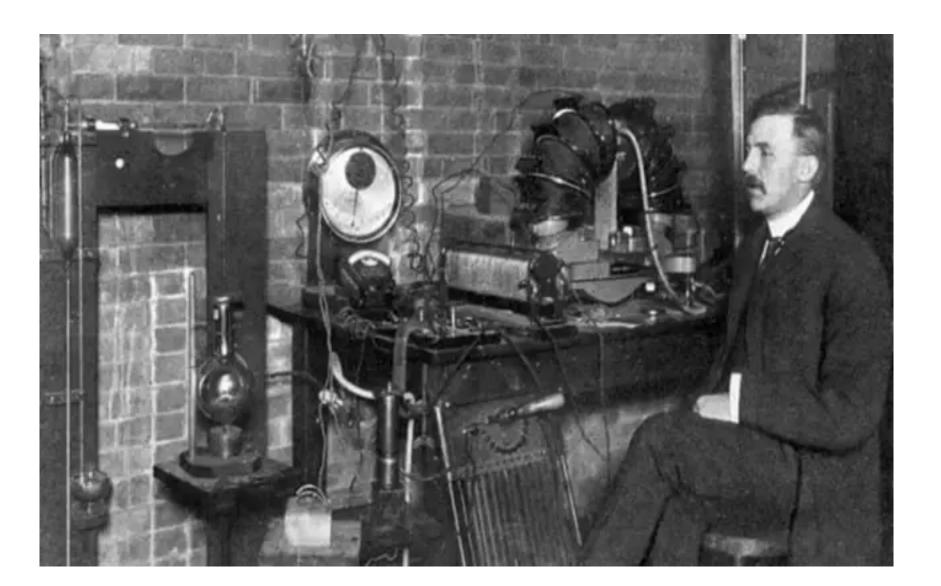
discussion, refrain from introducing basics of SIDIS and PDFs, TMDs, and FFs

m cf. Ralf's talk yesterday

• a century ago, things were "simple":

Gunar Schnell

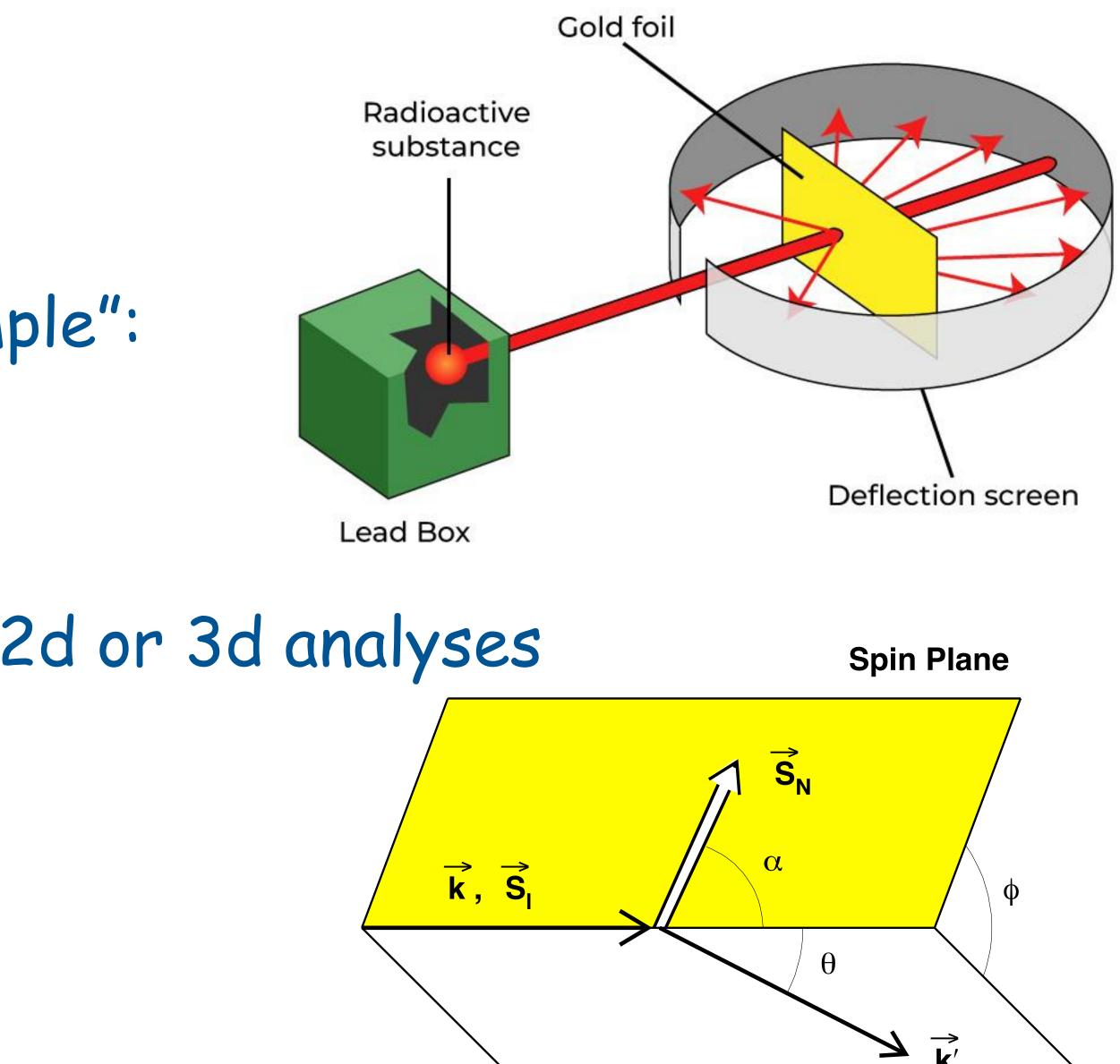


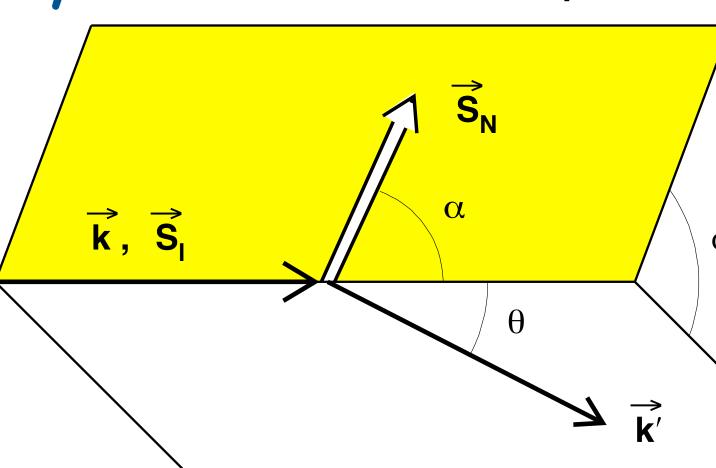


• a century ago, things were "simple":

Inclusive DIS already requires 2d or 3d analyses

Gunar Schnell





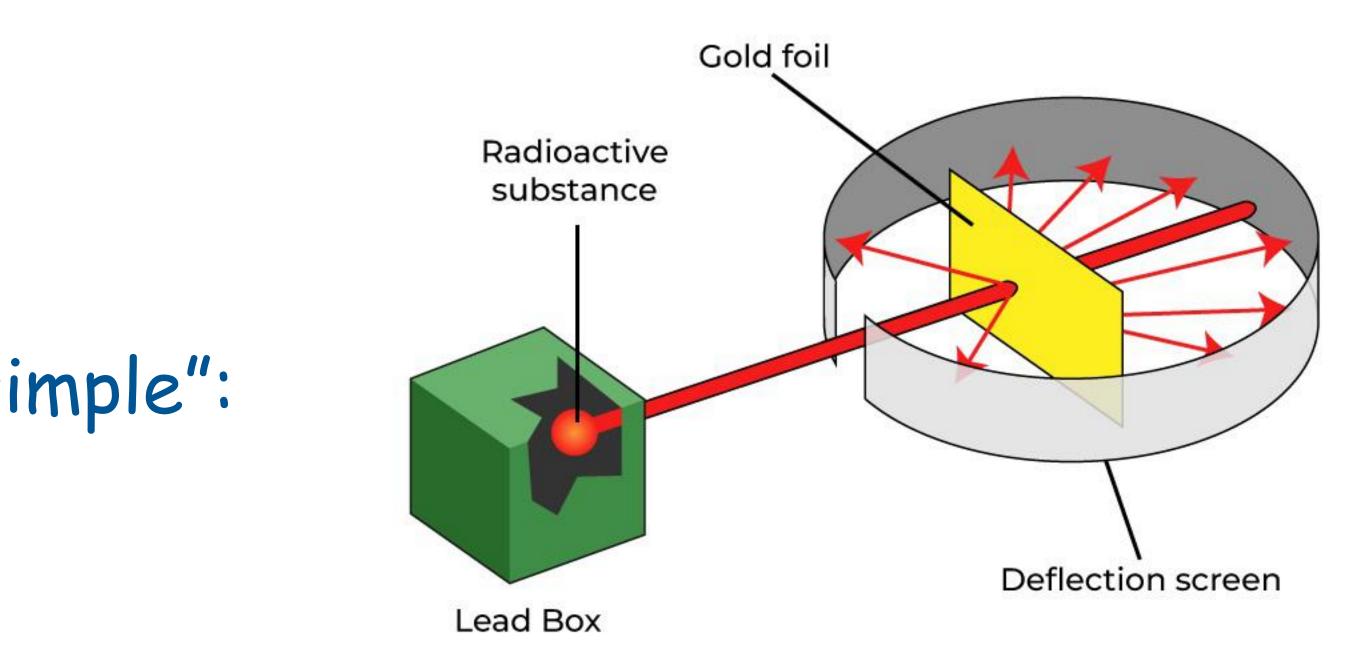
Scattering Plane

CFNS — May 15-17, 2024

• a century ago, things were "simple":

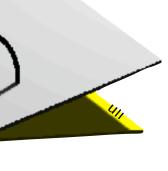
Inclusive DIS already requires 2d or 3d analyses semi-inclusive single-hadron DIS: up to 6d

Gunar Schnell



 \sim 1

 ϕ_S



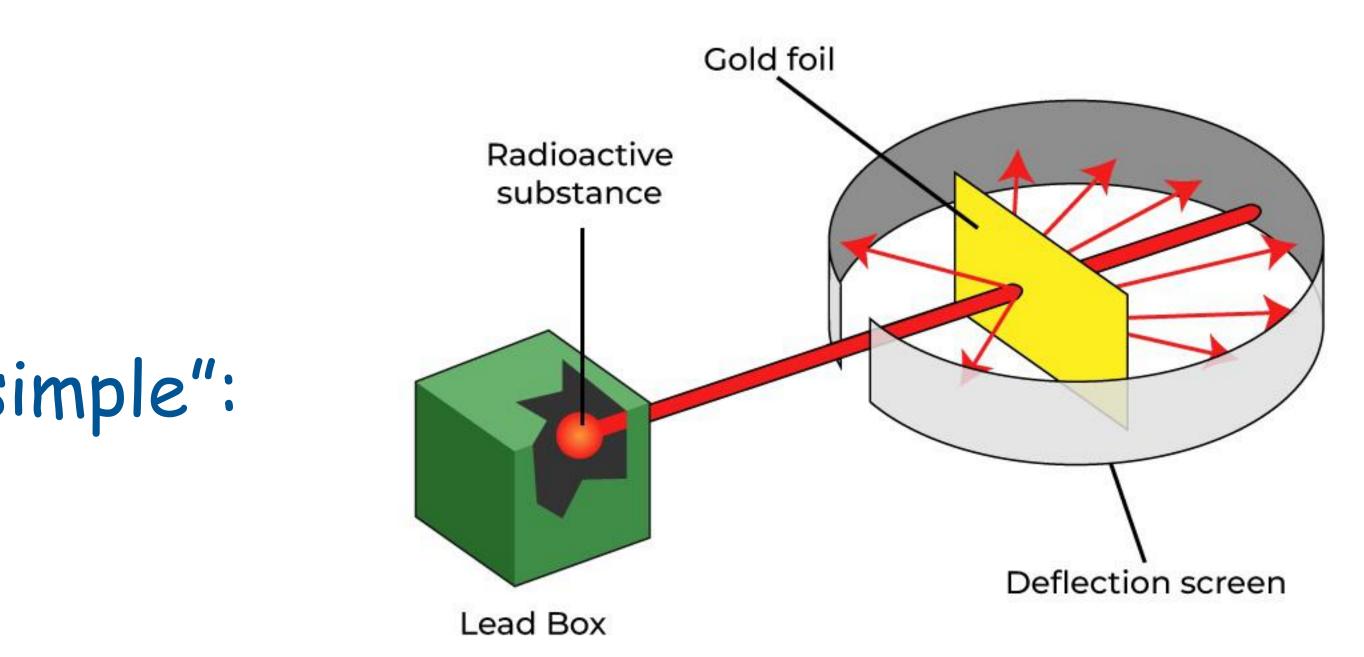
• a century ago, things were "simple":

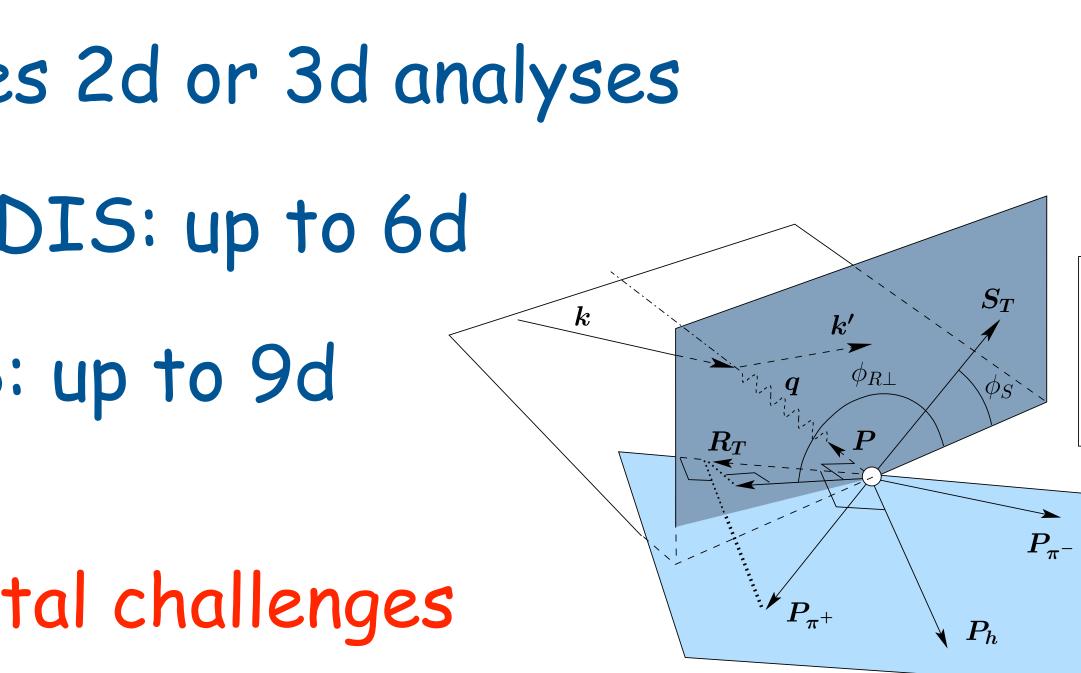
Inclusive DIS already requires 2d or 3d analyses

- semi-inclusive single-hadron DIS: up to 6d
- semi-inclusive di-hadron DIS: up to 9d

both theoretical & experimental challenges

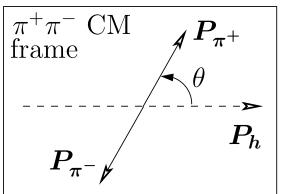
Gunar Schnell





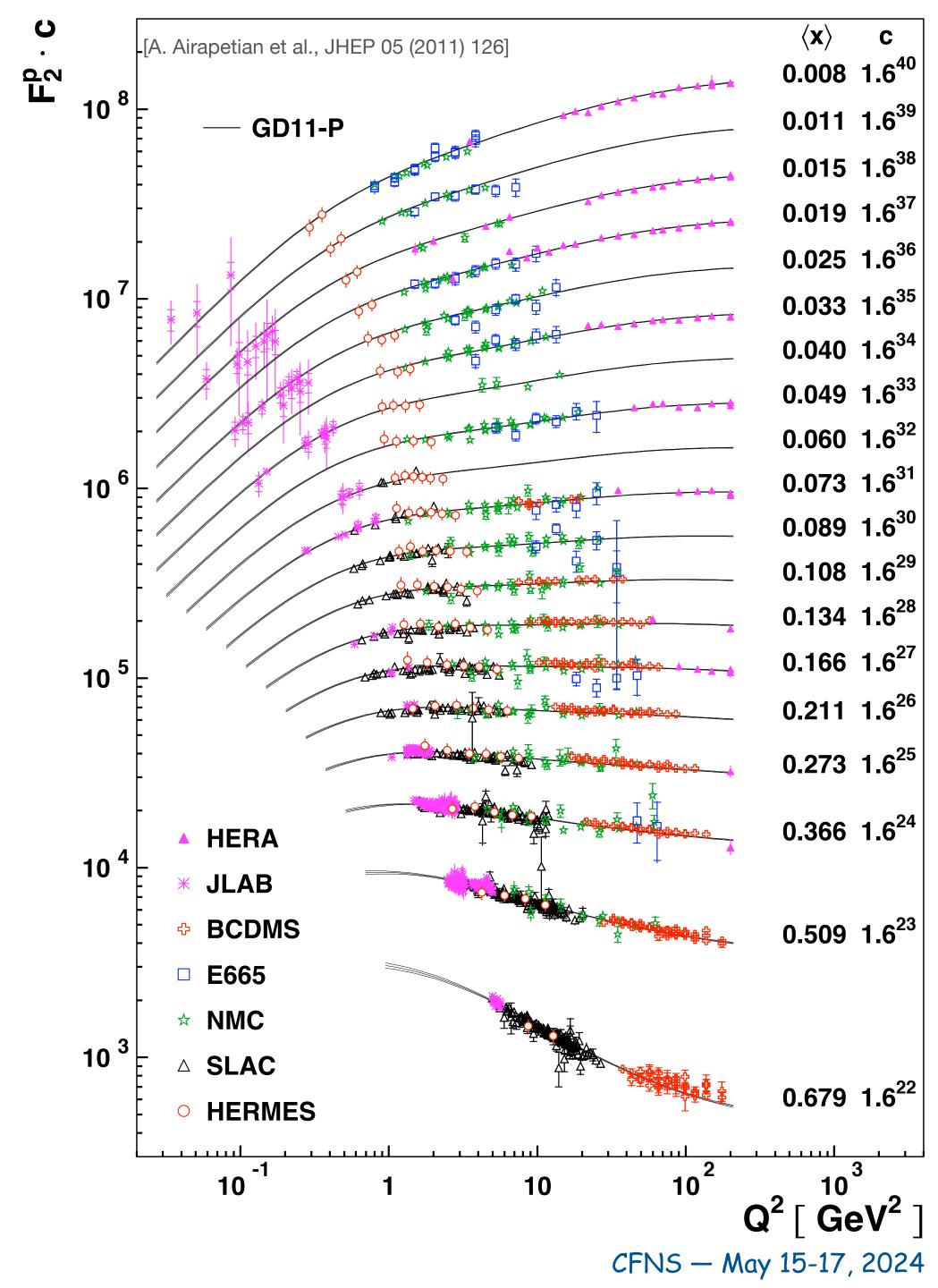
CFNS — May 15-17, 2024

 P_{π^-}

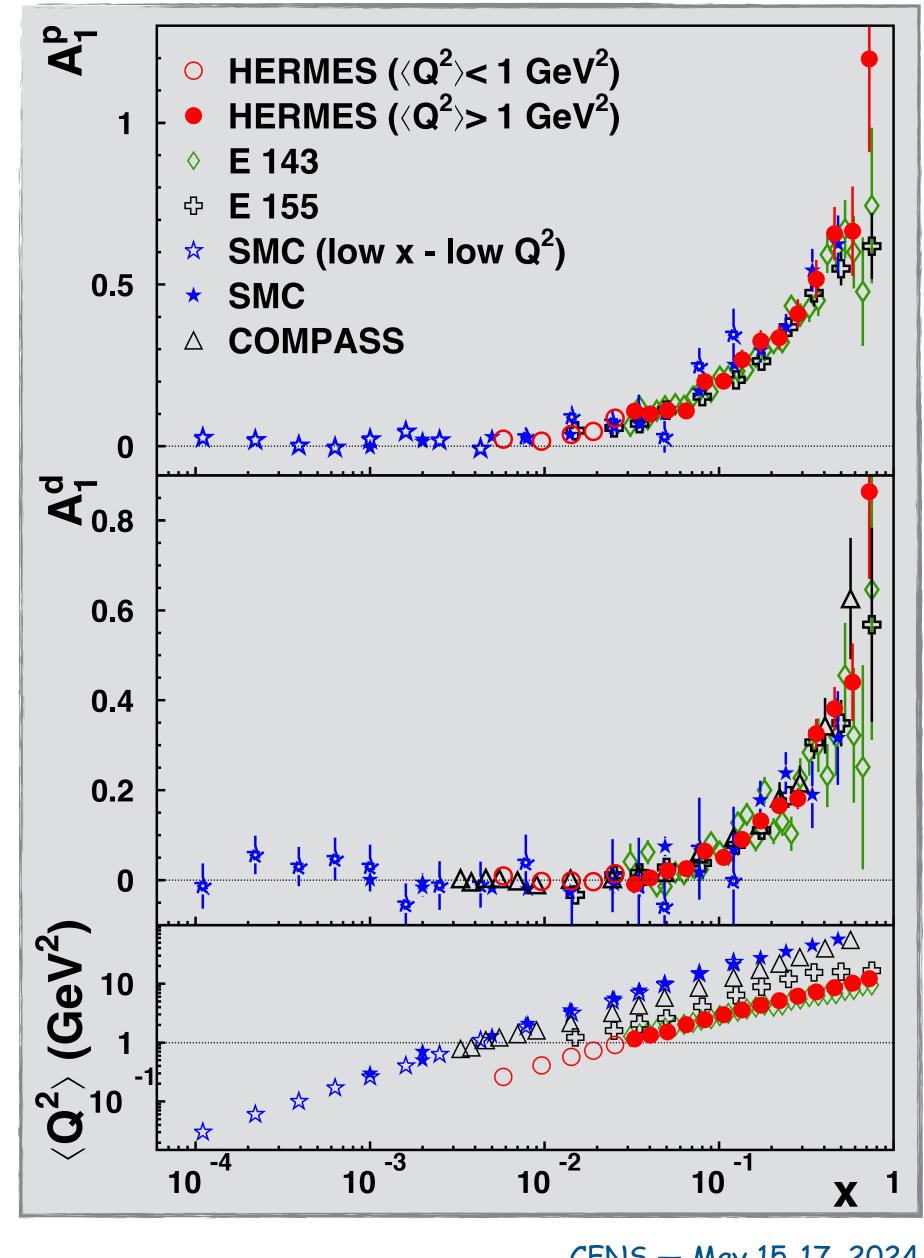


• unpolarised DIS: obviously bin and unfold in 2d

Gunar Schnell



- unpolarised DIS: obviously bin and unfold in 2d
- Inclusive scattering spin-asymmetries: "saved" by weak Q² dependence of longitudinally double-polarised DIS



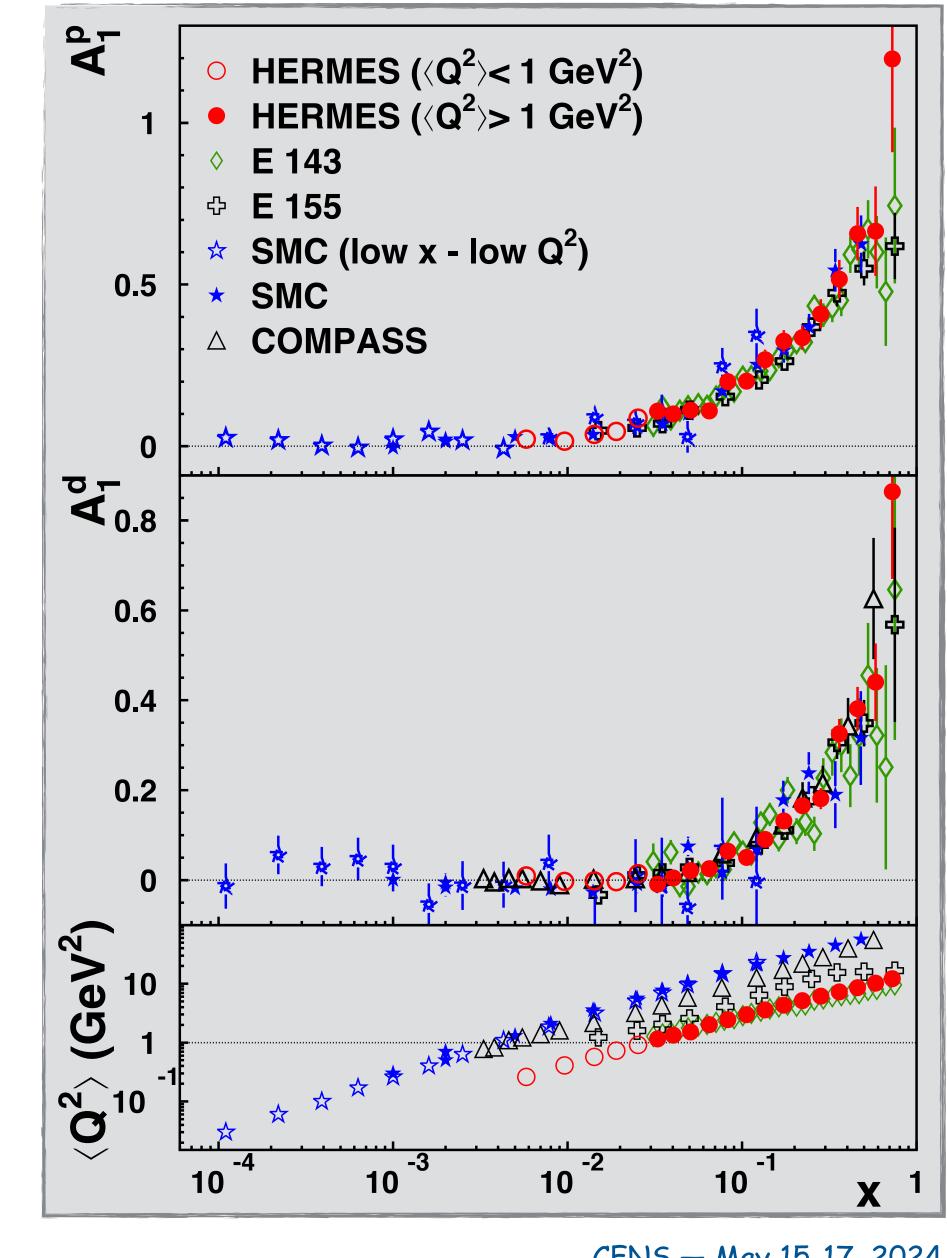
CFNS - May 15-17, 2024

- unpolarised DIS: obviously bin and unfold in 2d
- Inclusive scattering spin-asymmetries: "saved" by weak Q² dependence of longitudinally double-polarised DIS
- however, don't be misled!

• **g**₂, **A**_{UT}, ...

binning in only one variable might hide dependence on other variable(s)

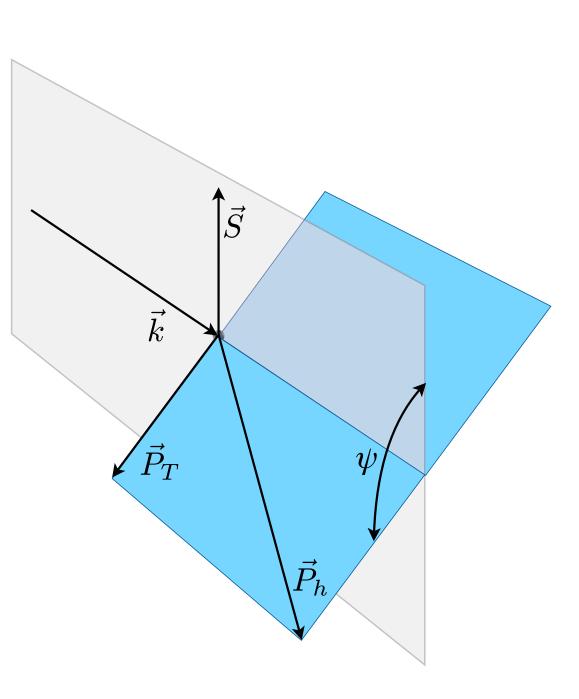
Gunar Schnell

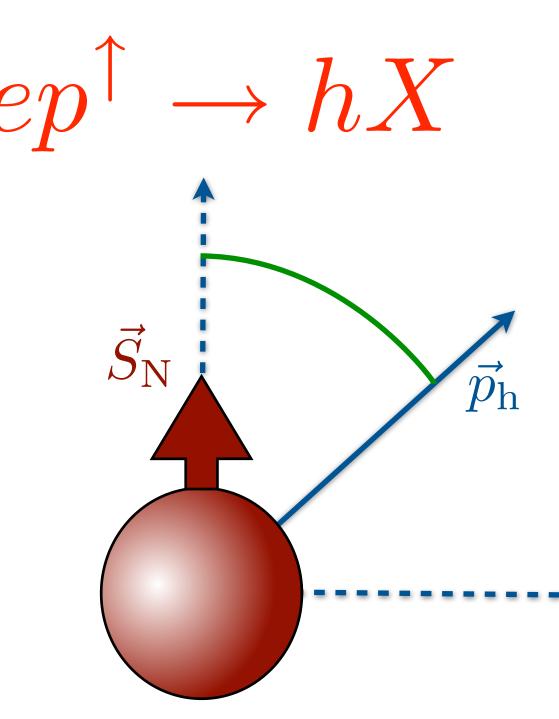


CFNS — May 15-17, 2024

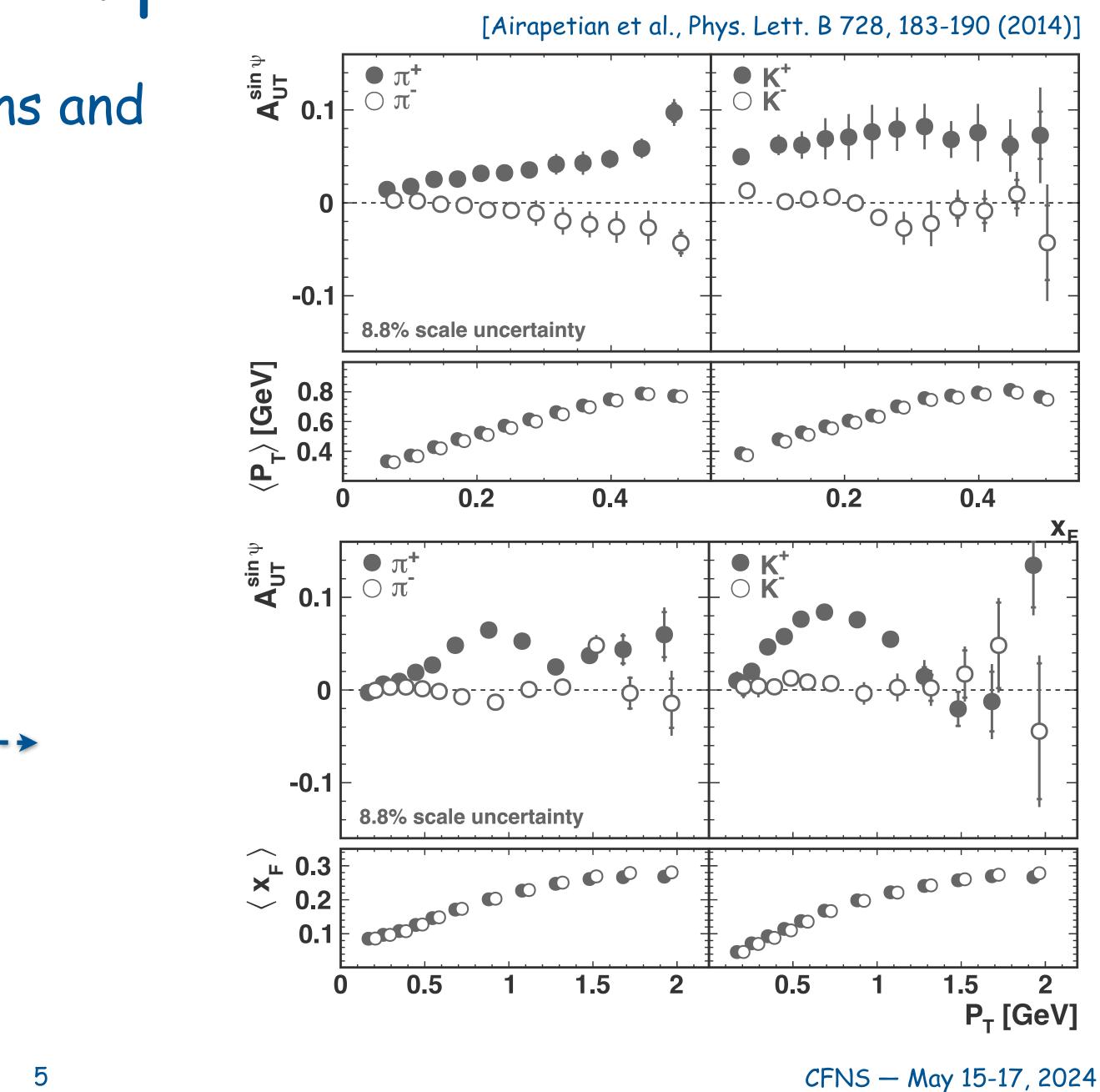
inclusive hadrons: $A_{UT} \sin \psi$ amplitude

clear left-right asymmetries for pions and positive kaons



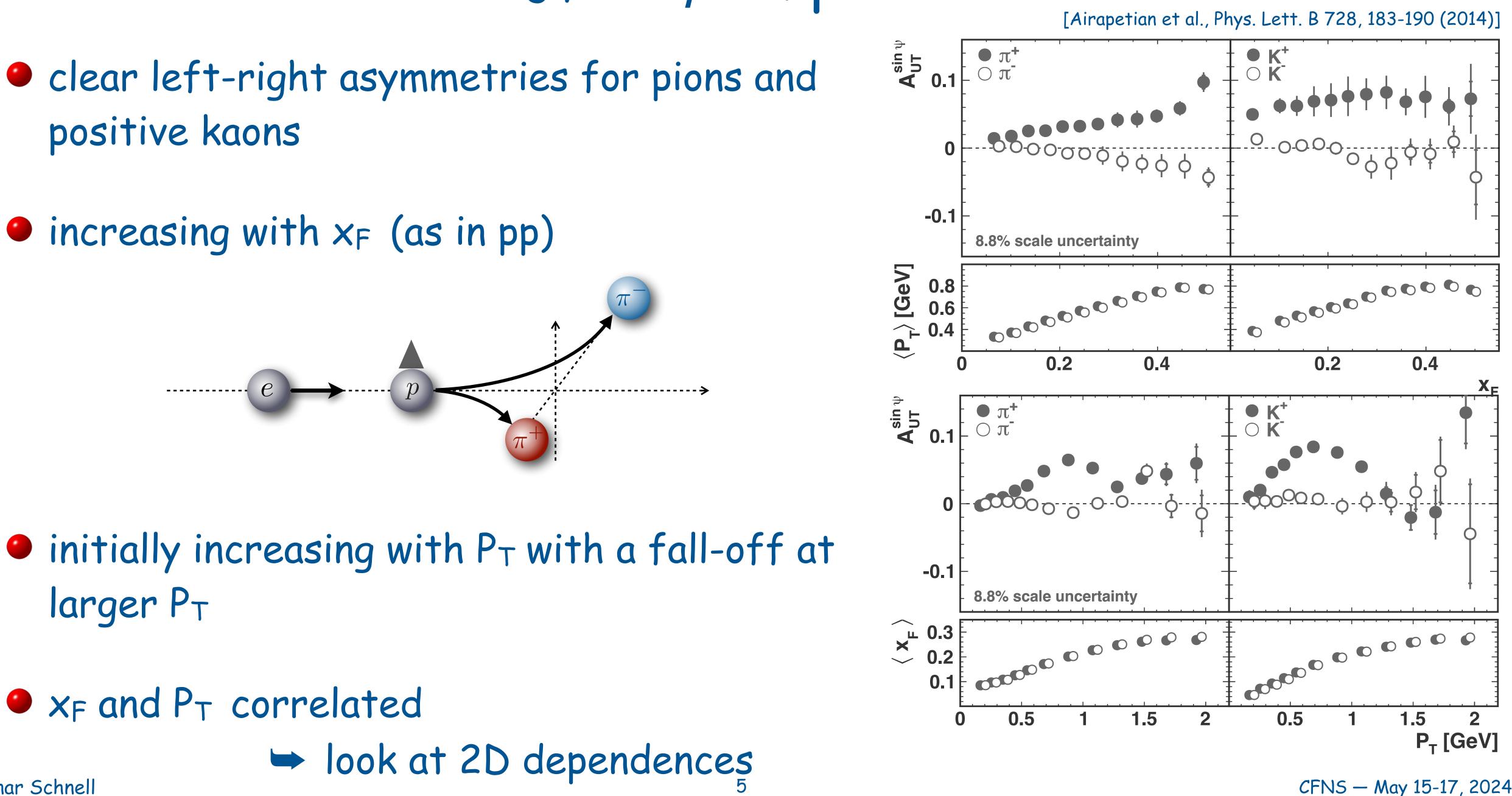


lepton going into the plane



inclusive hadrons: $A_{UT} \sin \psi$ amplitude

- positive kaons
- increasing with x_F (as in pp)



larger P_T

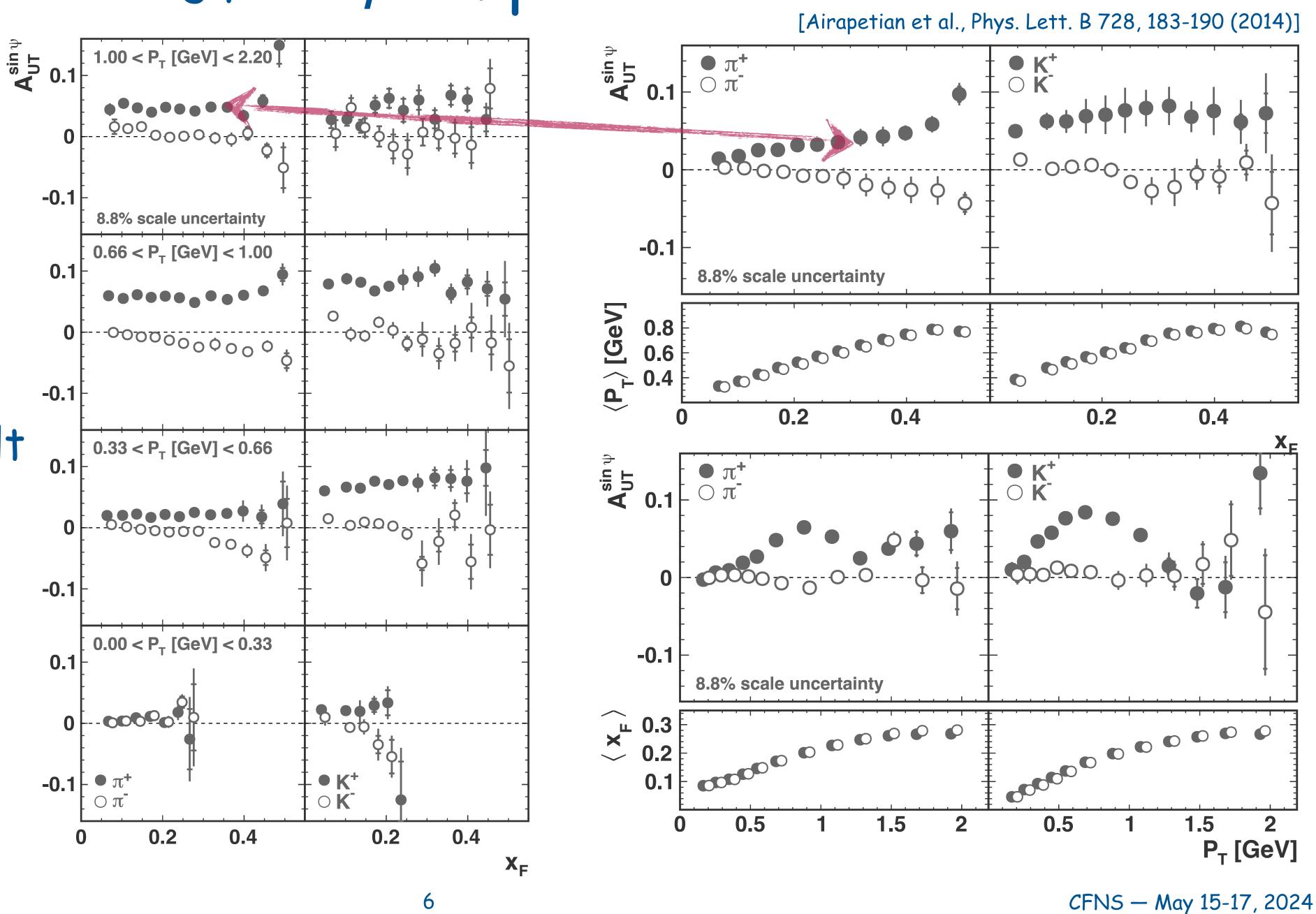
• x_F and P_T correlated

Gunar Schnell

inclusive hadrons: A_{UT} siny amplitude

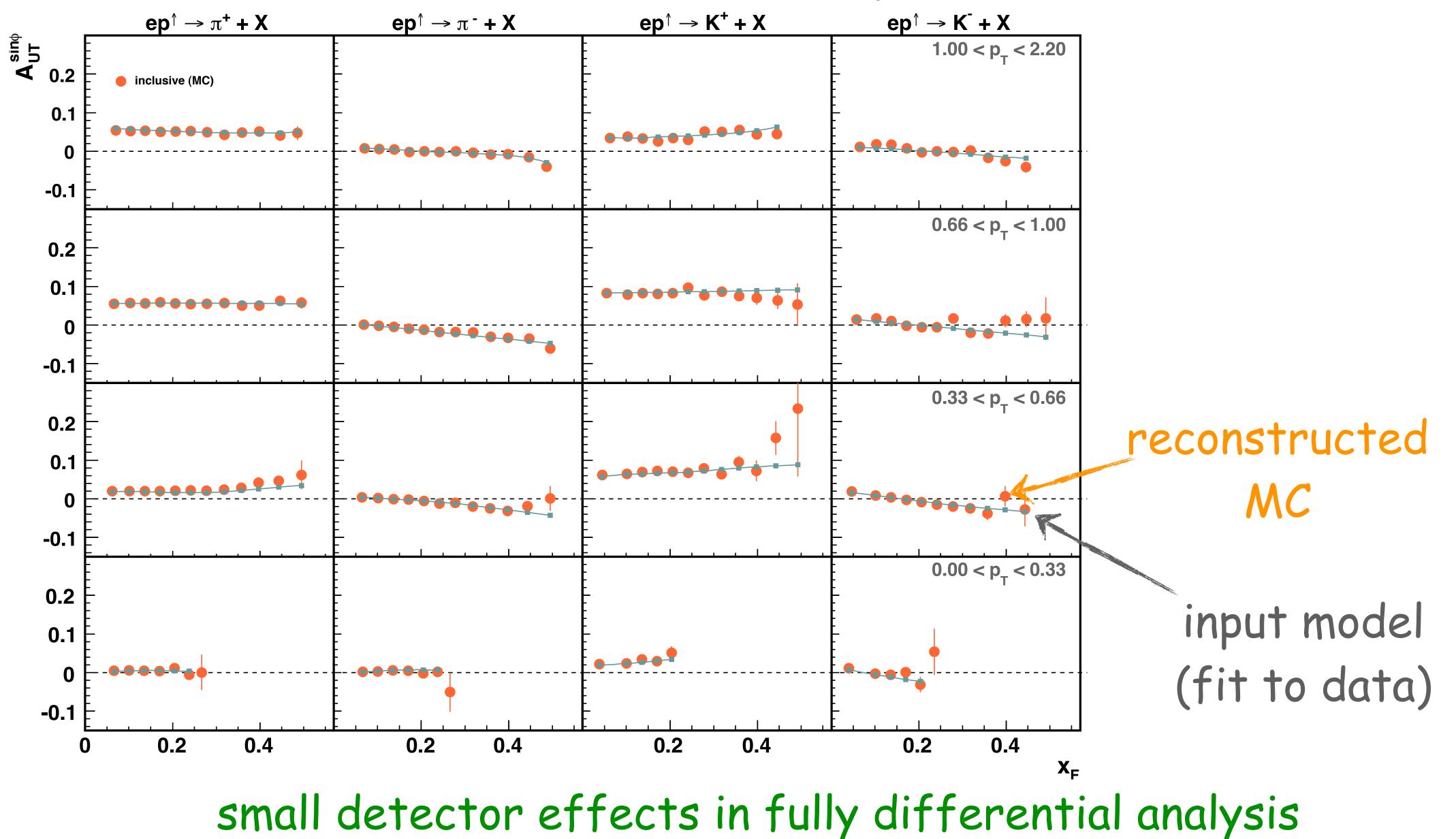
• increase with x_F disappears in 2d binning

increase in 1d presentation result of underlying P_T dependence



6

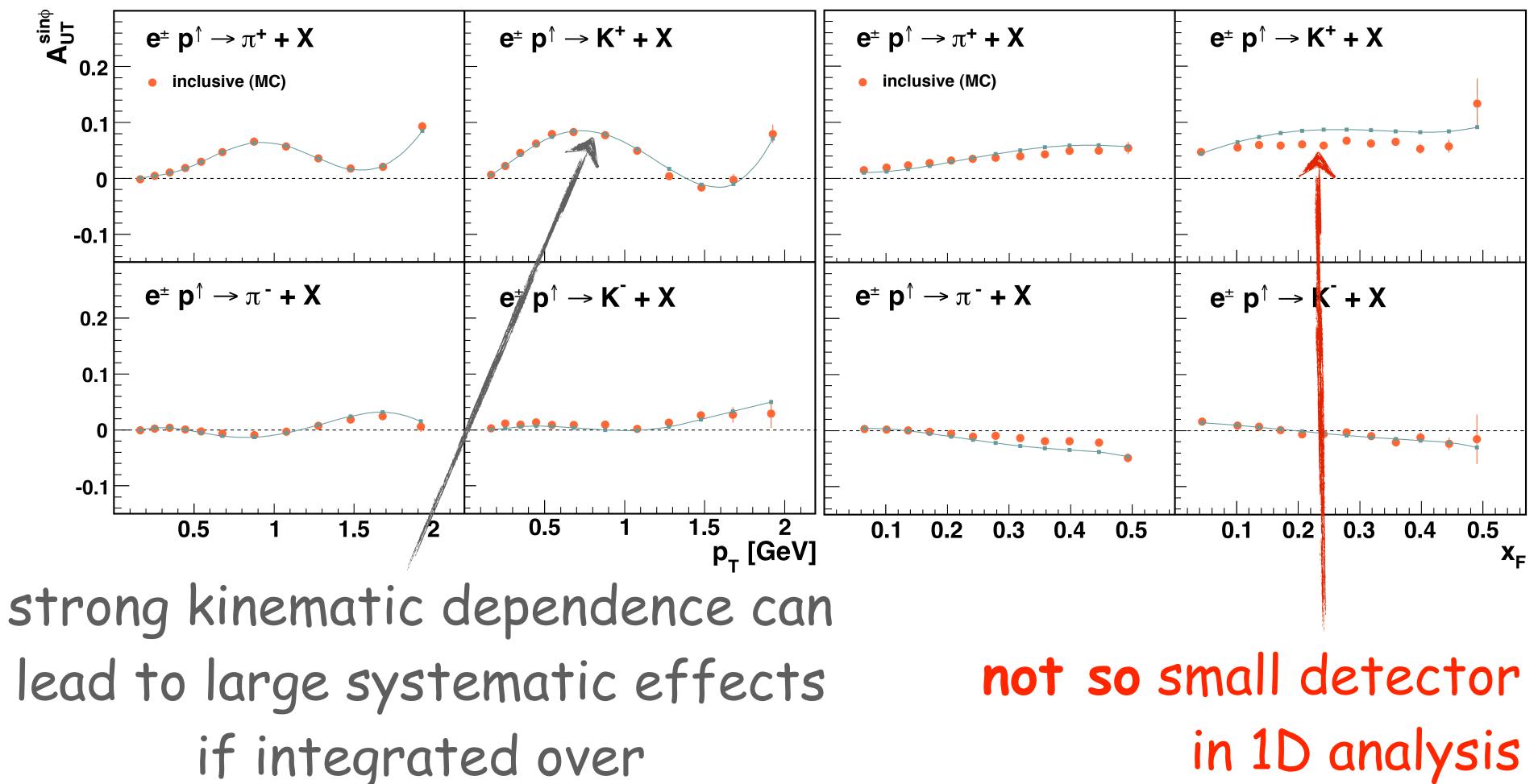
inclusive hadrons: $A_{UT} sin \psi$ amplitude



Gunar Schnell

7

inclusive hadrons: $A_{UT} \sin \psi$ amplitude

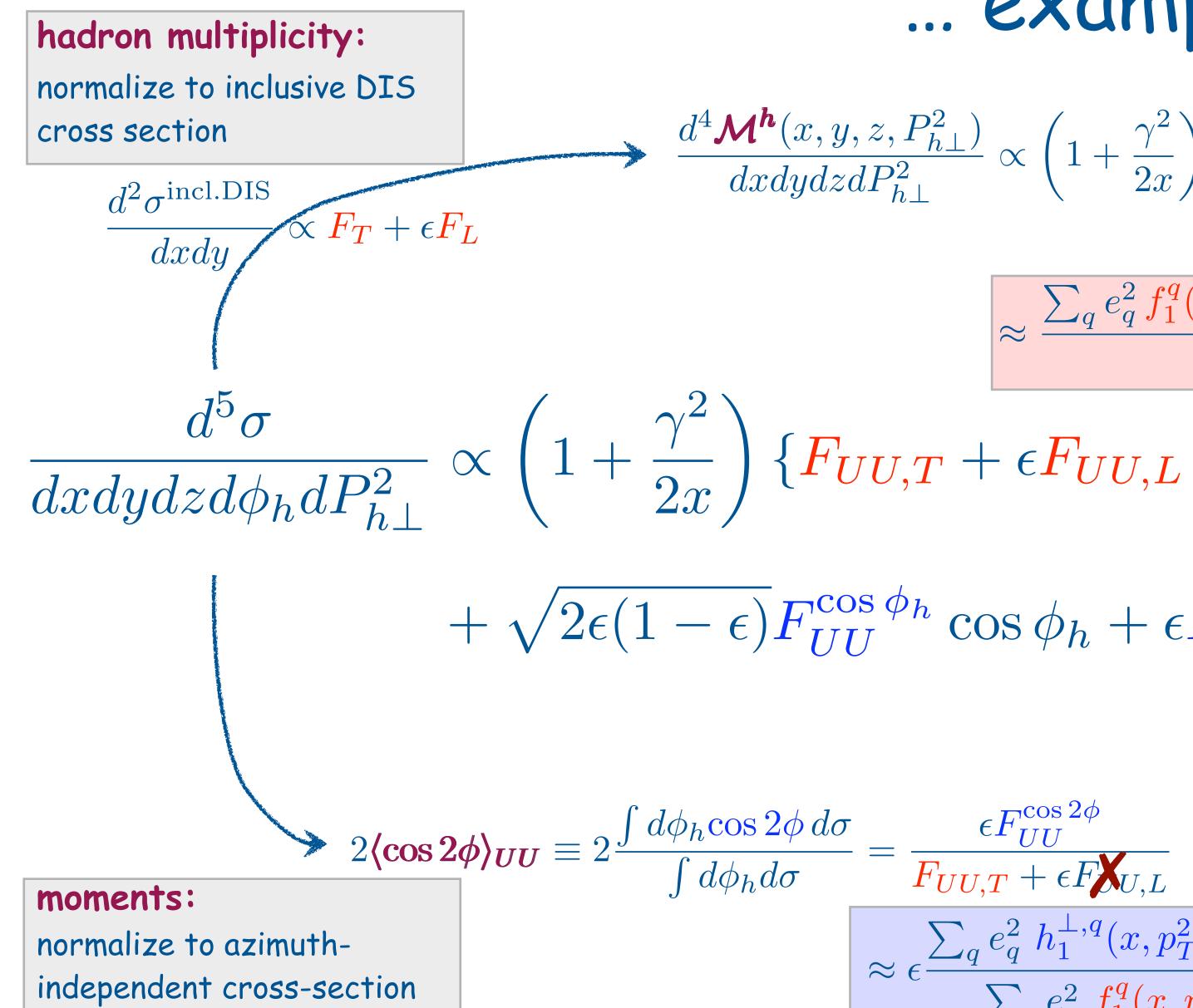


need a good MC model for realistic uncertainty estimate

not so small detector effects

CFNS — May 15-17, 2024

- so why have we stayed with 1d? Somewhat more objective reasoning: e.g.,
 - weak Q² dependence of asymmetries
- Some pragmatic reasoning: e.g.,
 - less precision
 - Iess phase space and thus less variation of cross sections, ...
- Some plainly wrong reasoning: e.g.,
 - Stick to the approach that seemed to work before
 - multi-d dependences difficult to visualise
 - "we are doing collinear physics, no need for TMD d.o.f.



Gunar Schnell

... example measurements

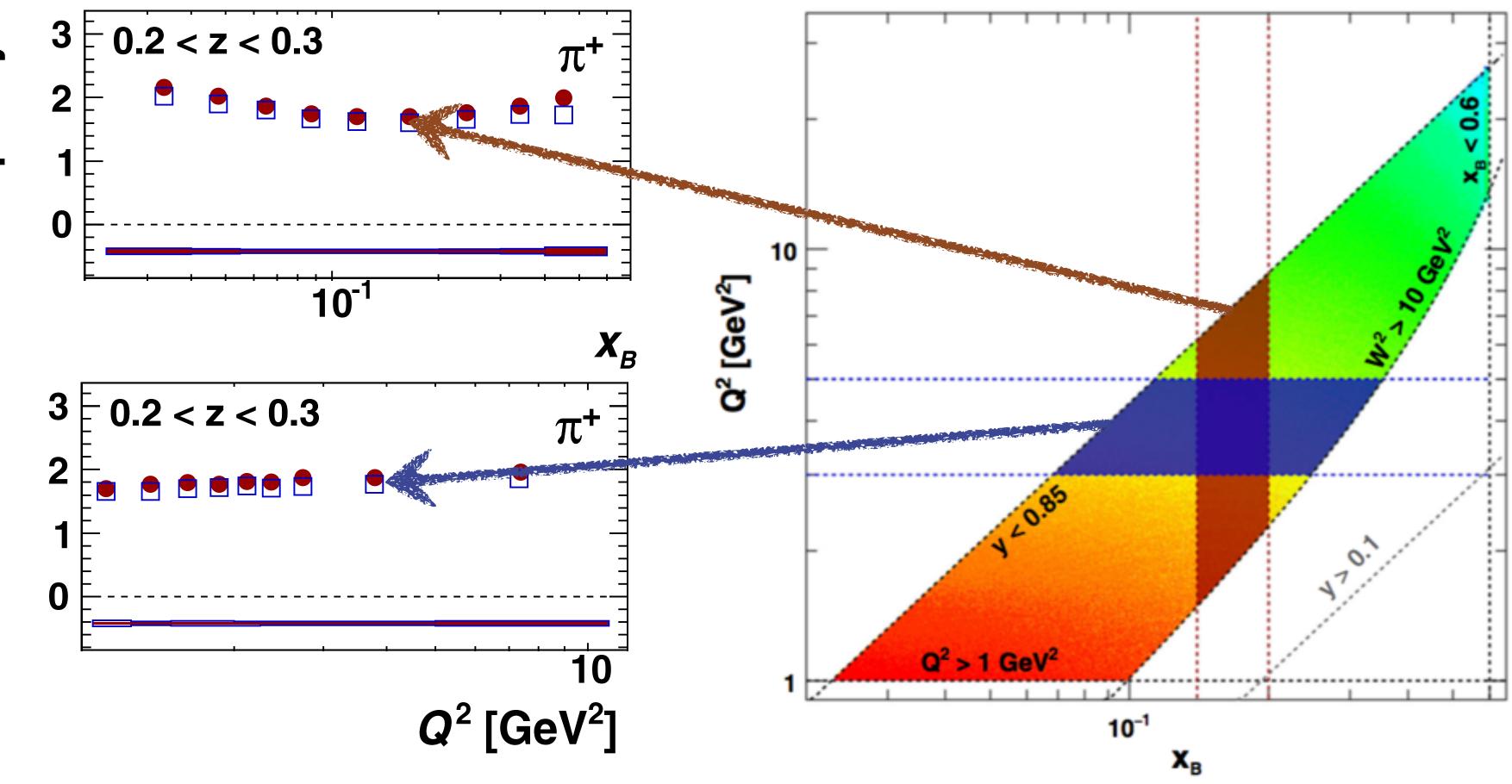
$$\frac{\mathbf{A}^{h}(x, y, z, P_{h\perp}^{2})}{dx dy dz dP_{h\perp}^{2}} \propto \left(1 + \frac{\gamma^{2}}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_{T} + \epsilon F_{L}}$$

$$\approx \frac{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^{q \to h}(z, K_T^2)}{\sum_q e_q^2 f_1^q(x)}$$

 $+\sqrt{2\epsilon(1-\epsilon)}F_{III}^{\cos\phi_h}\cos\phi_h + \epsilon F_{III}^{\cos2\phi_h}\cos2\phi_h\}$

 $\approx \epsilon \frac{\sum_{q} e_q^2 h_1^{\perp,q}(x, p_T^2) \otimes_{\text{BM}} H_1^{\perp,q \to h}(z, K_T^2)}{\sum_{q} e_q^2 f_1^q(x, p_T^2) \otimes D_1^{q \to h}(z, K_T^2)}$

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

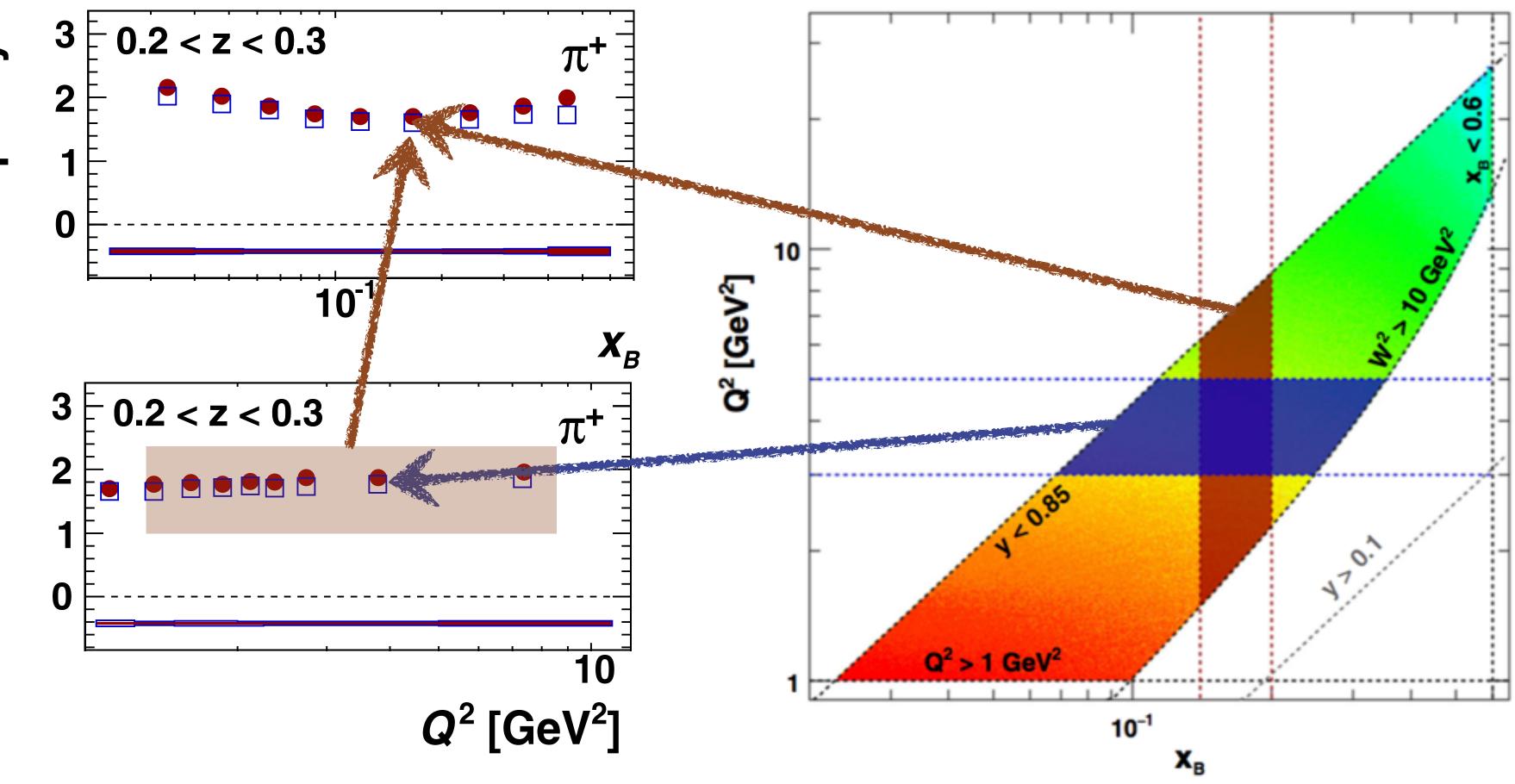


Multiplicity

Gunar Schnell

T

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

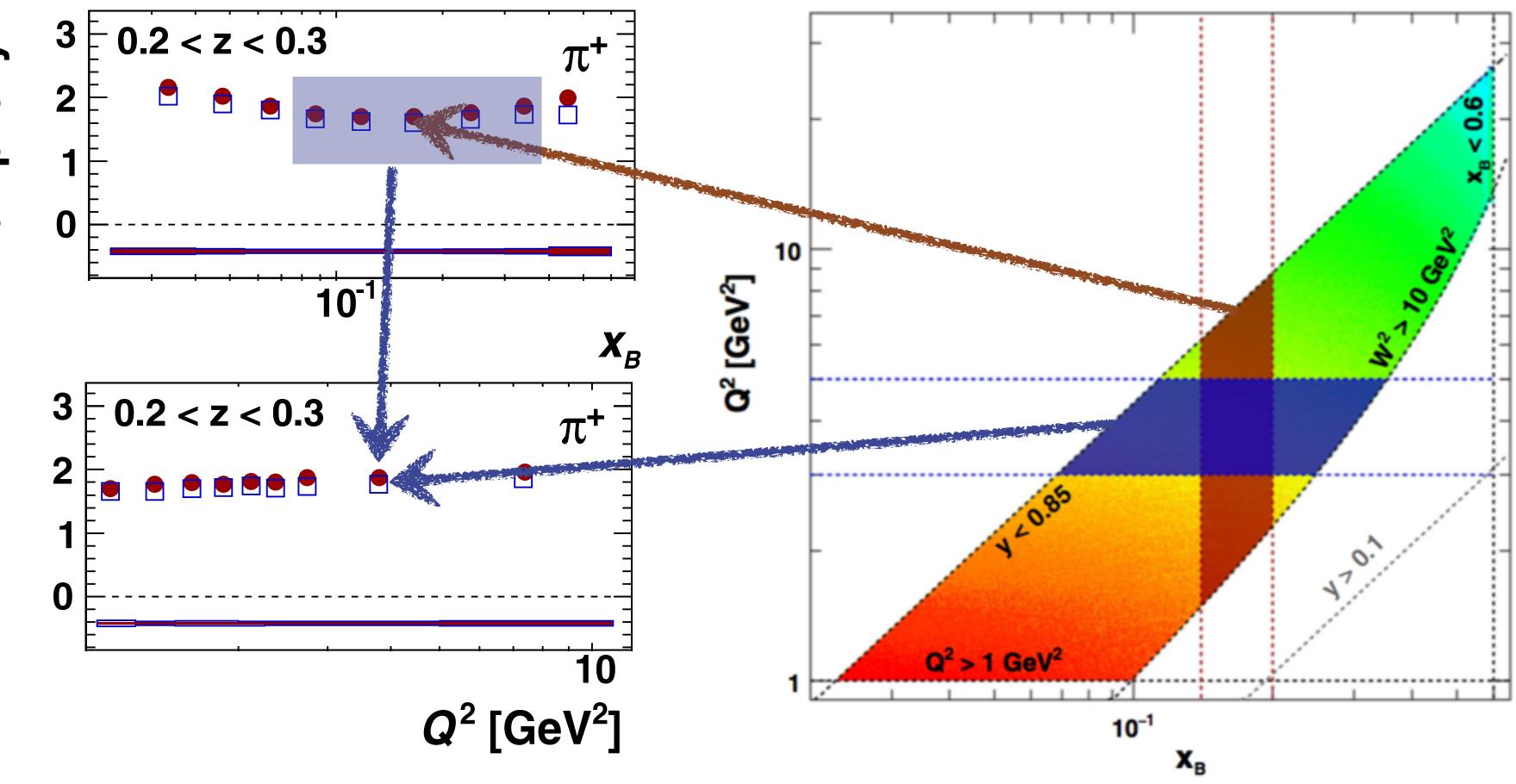


Multiplicity

Gunar Schnell

T

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

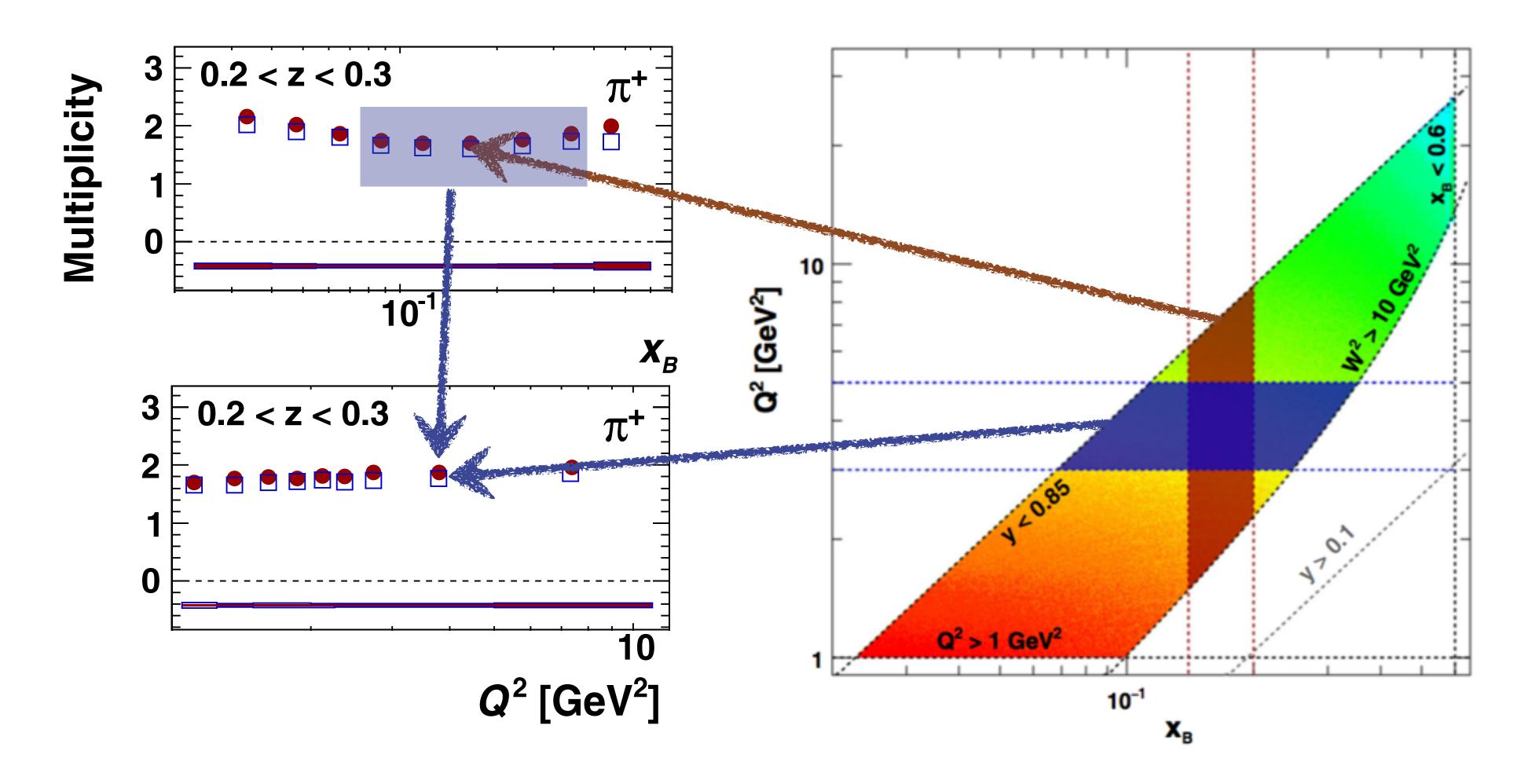


Multiplicity

Gunar Schnell

T

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$



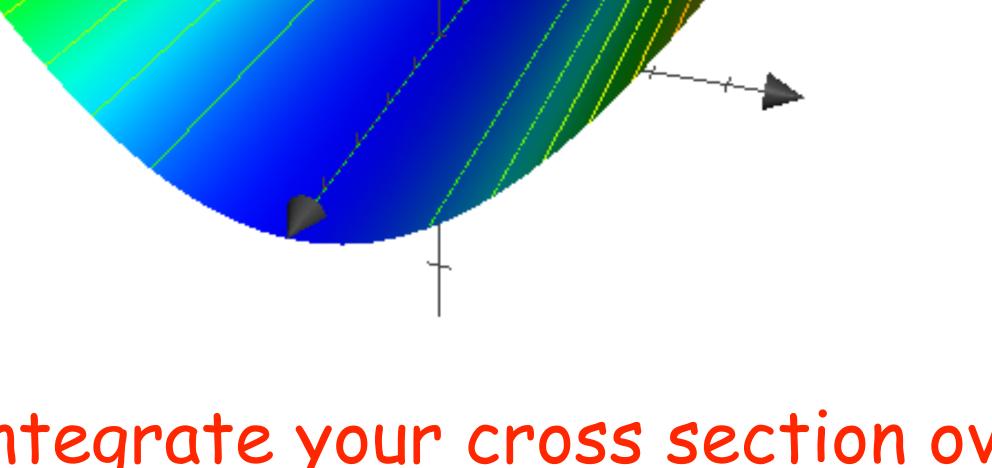
multiplicities in the two projections can be different

Gunar Schnell

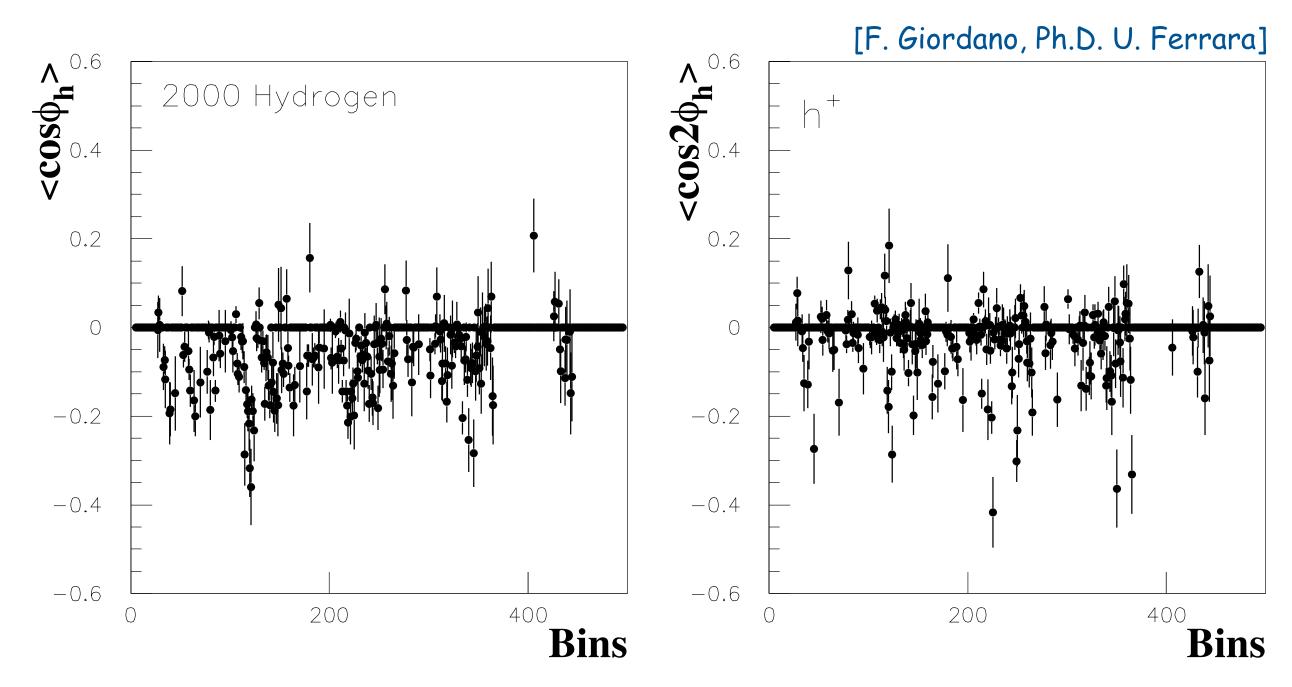
 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

- the average along the valley will be smaller than the average along the gradient
- still the average kinematics can be the same
- take-away message: (when told so) integrate your cross section over the

to experiments: fully differential analyses! Gunar Schnell



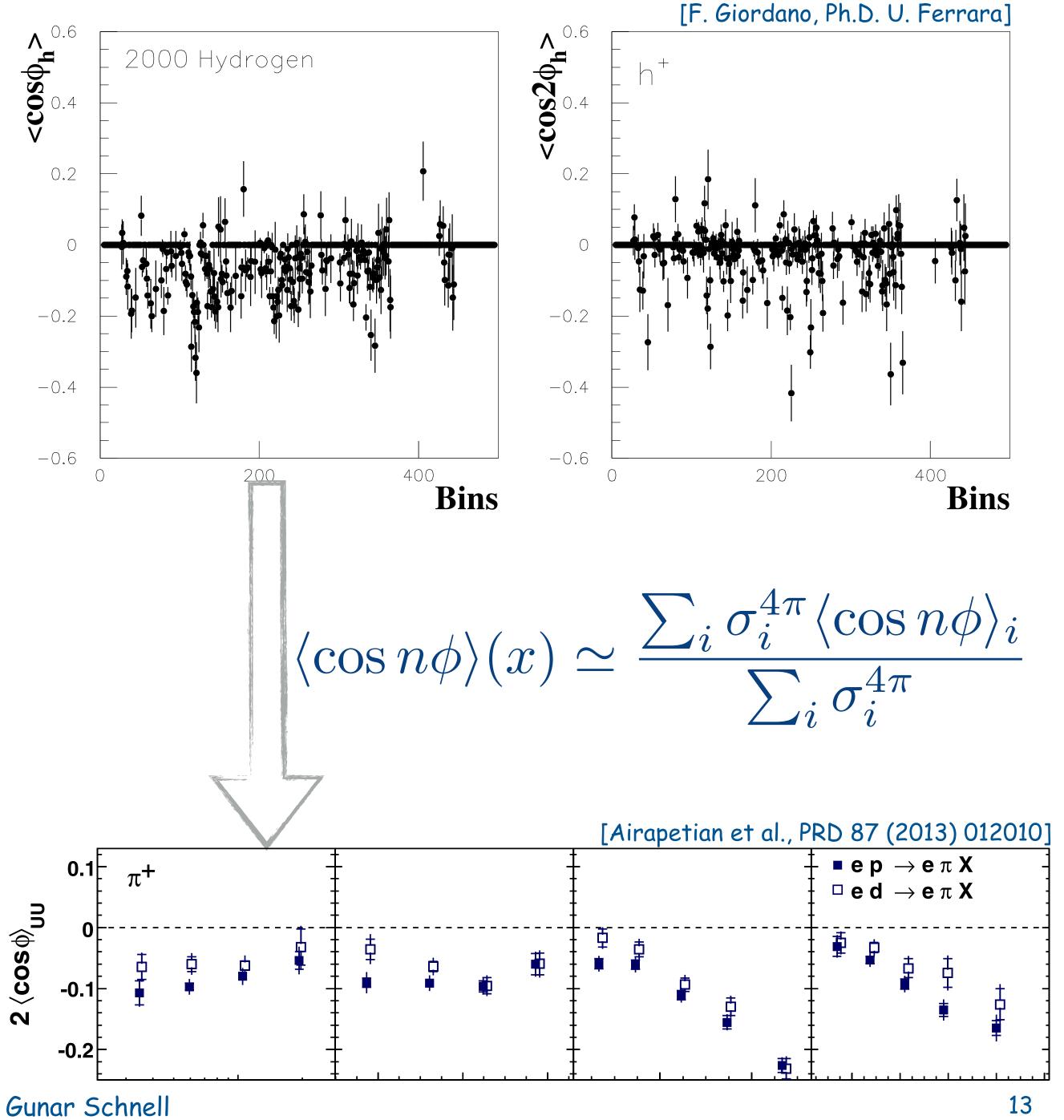
kinematic ranges dictated by the experiment (e.g., do not simply evaluate it at the average kinematics)



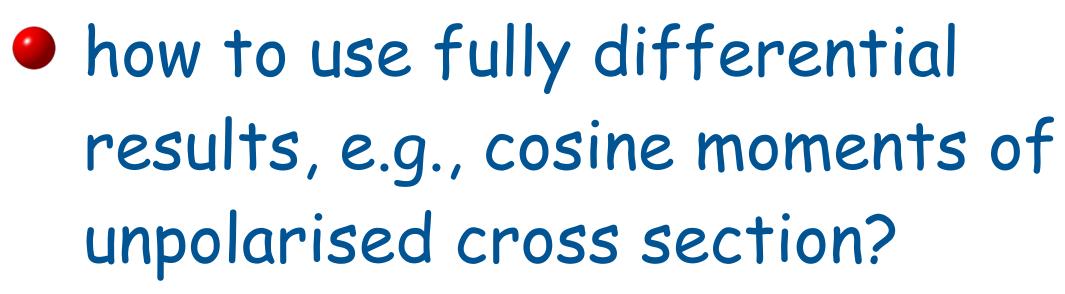
Gunar Schnell

back from 5d to 1d

- how to use fully differential results, e.g., cosine moments of unpolarised cross section?
 - either directly in fully differential fits

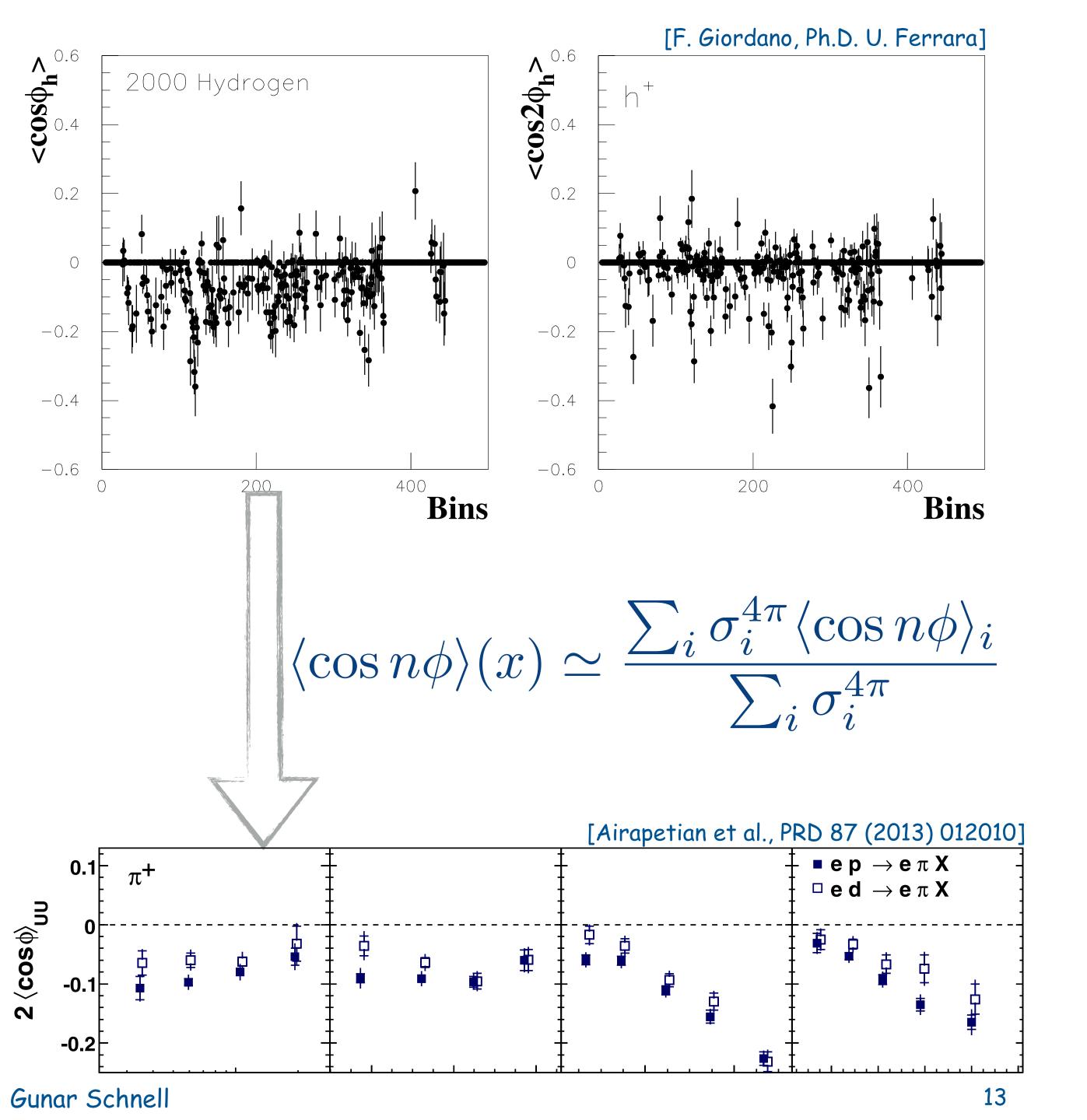


back from 5d to 1d



- either directly in fully differential fits
- project back to 1d for vizualization

CFNS - May 15-17, 2024



back from 5d to 1d

- how to use fully differential results, e.g., cosine moments of unpolarised cross section?
 - either directly in fully differential fits
 - project back to 1d for vizualization

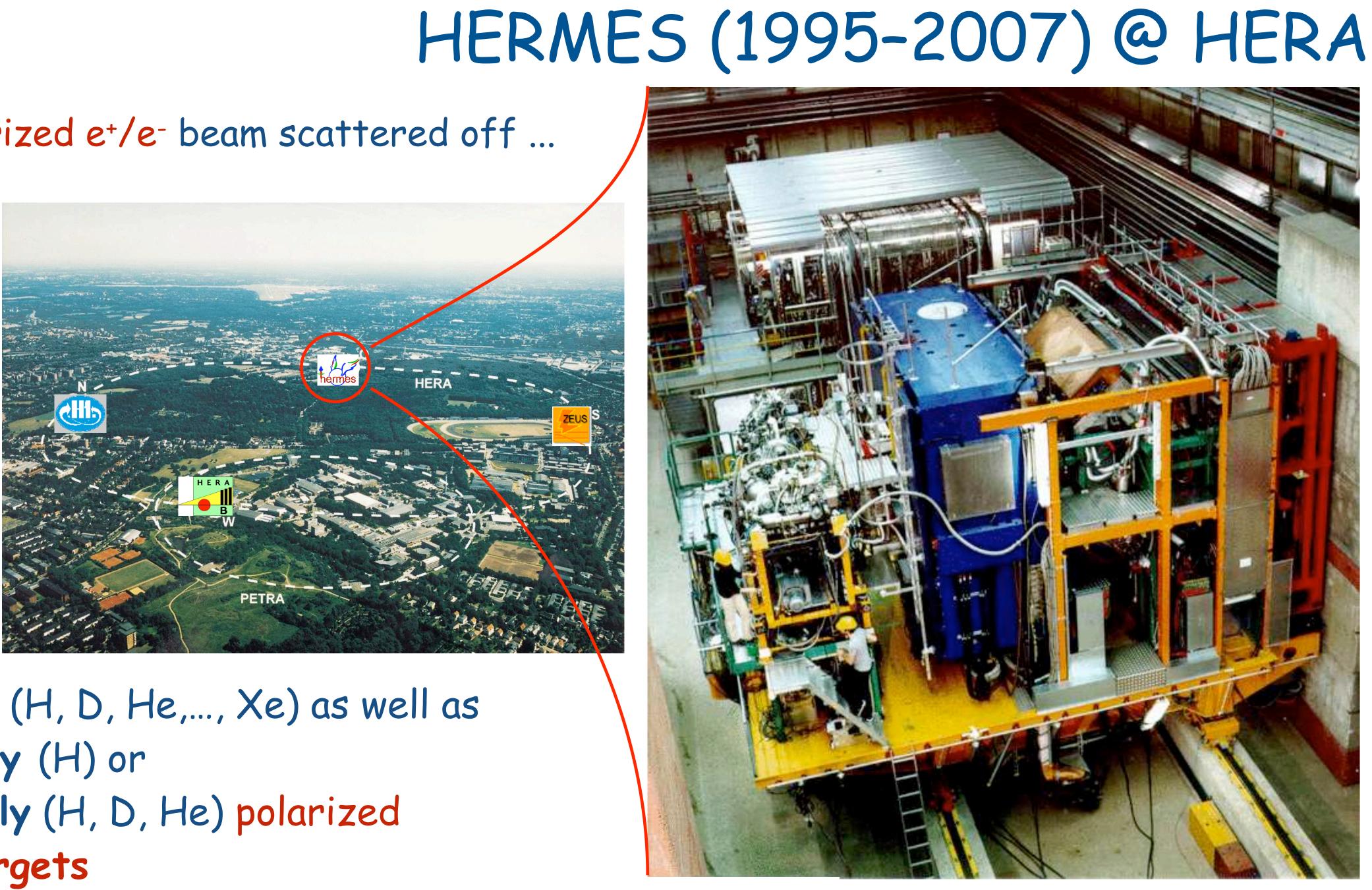
requires good knowledge of unpolarized cross section

CFNS - May 15-17, 2024

Gunar Schnell

when using 1d projections, ask yourself and your experiment's friends why 1d is sufficient and why not go multi-d?

27.6 GeV polarized e^{+}/e^{-} beam scattered off ...

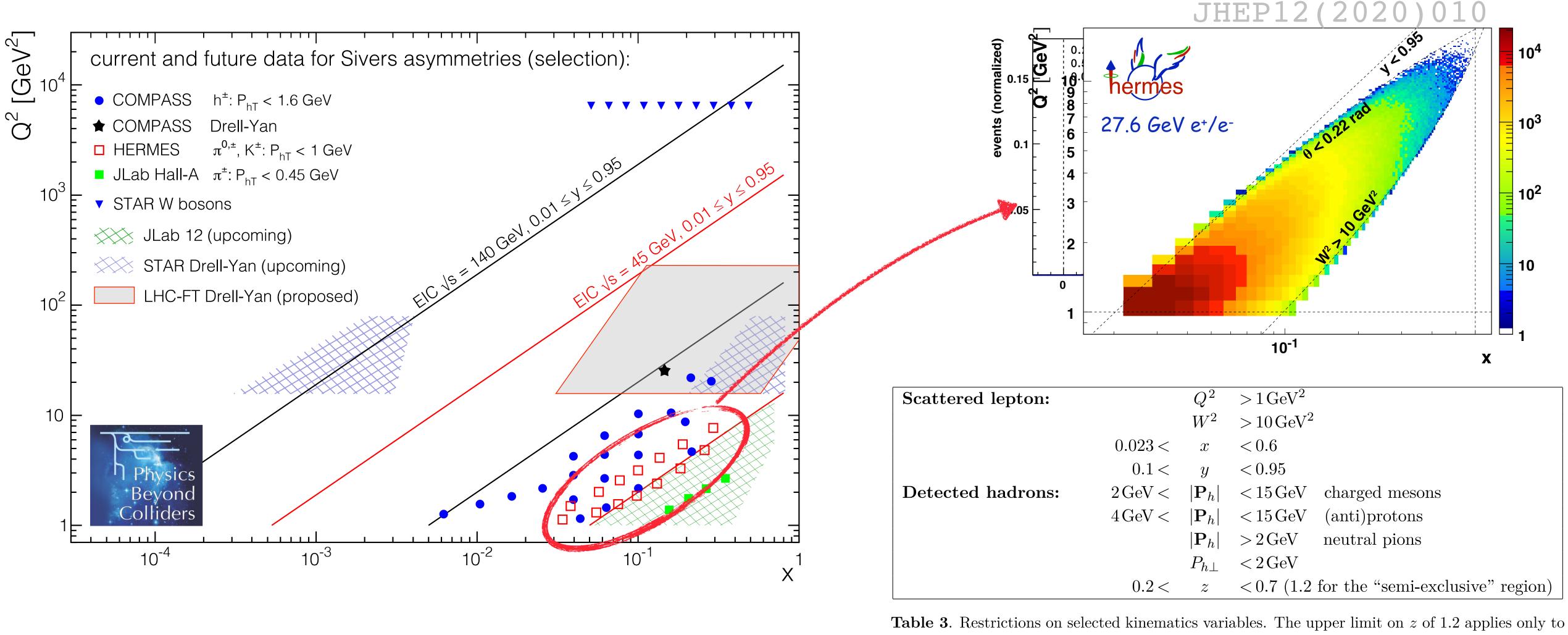


- unpolarized (H, D, He,..., Xe) as well as
- transversely (H) or
- longitudinally (H, D, He) polarized pure gas targets

Gunar

CFNS - May 15-17, 2024

2d kinematic phase space

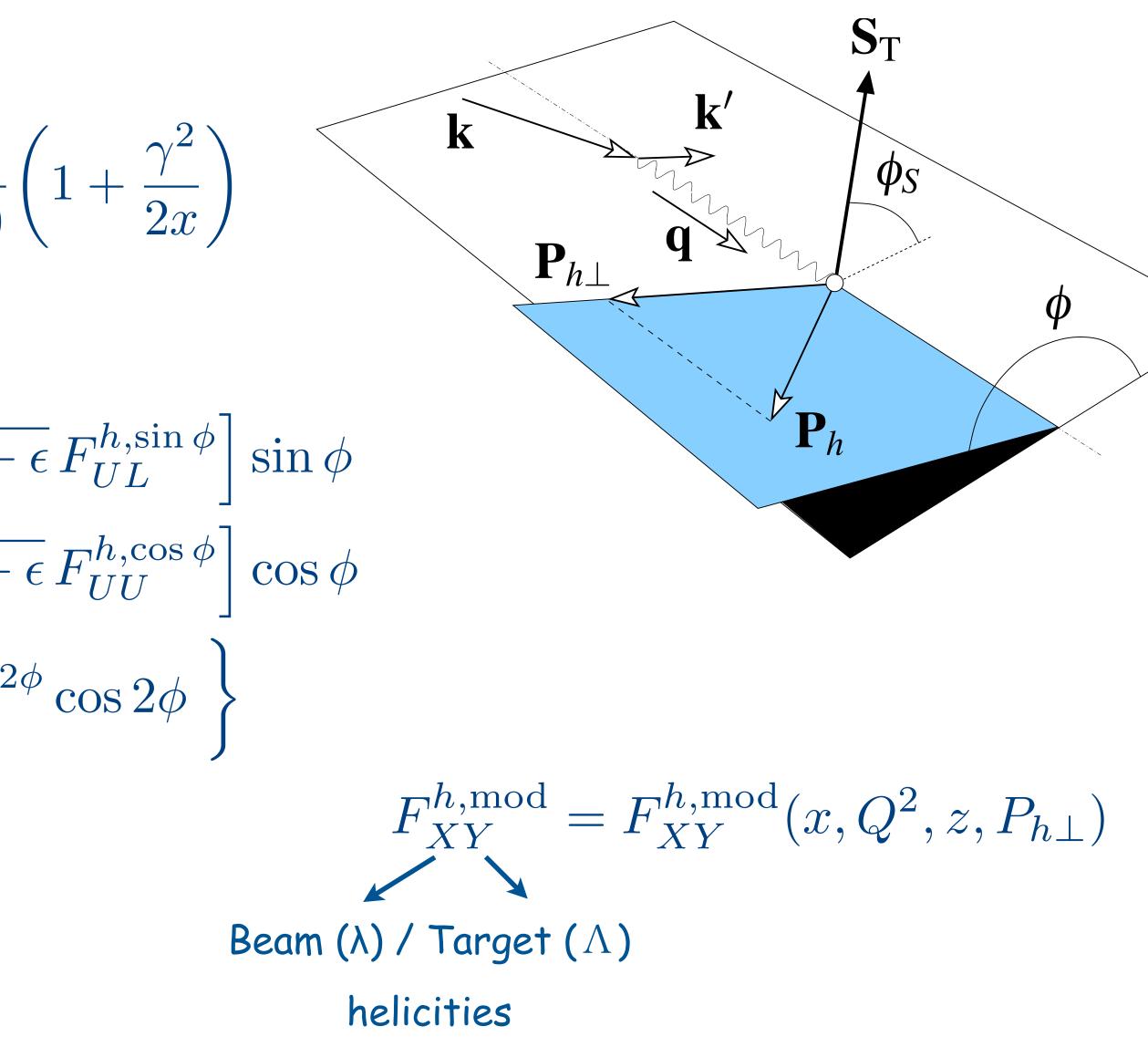


Gunar Schnell

the analysis of the z dependence.

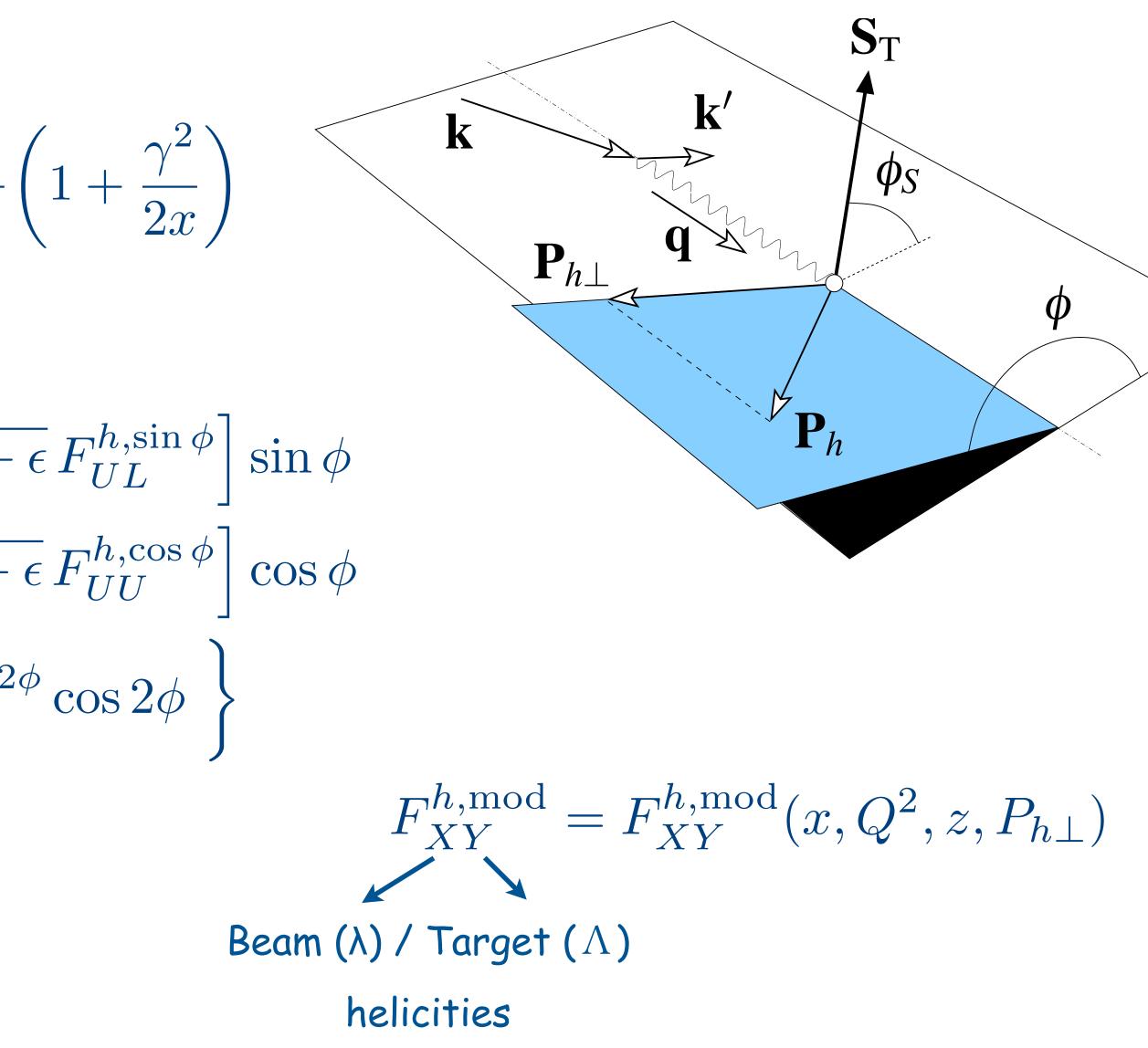
$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

Gunar Schnell



$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left(F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right) + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right] + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}$$

Gunar Schnell



$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right\}\right)\right)$$

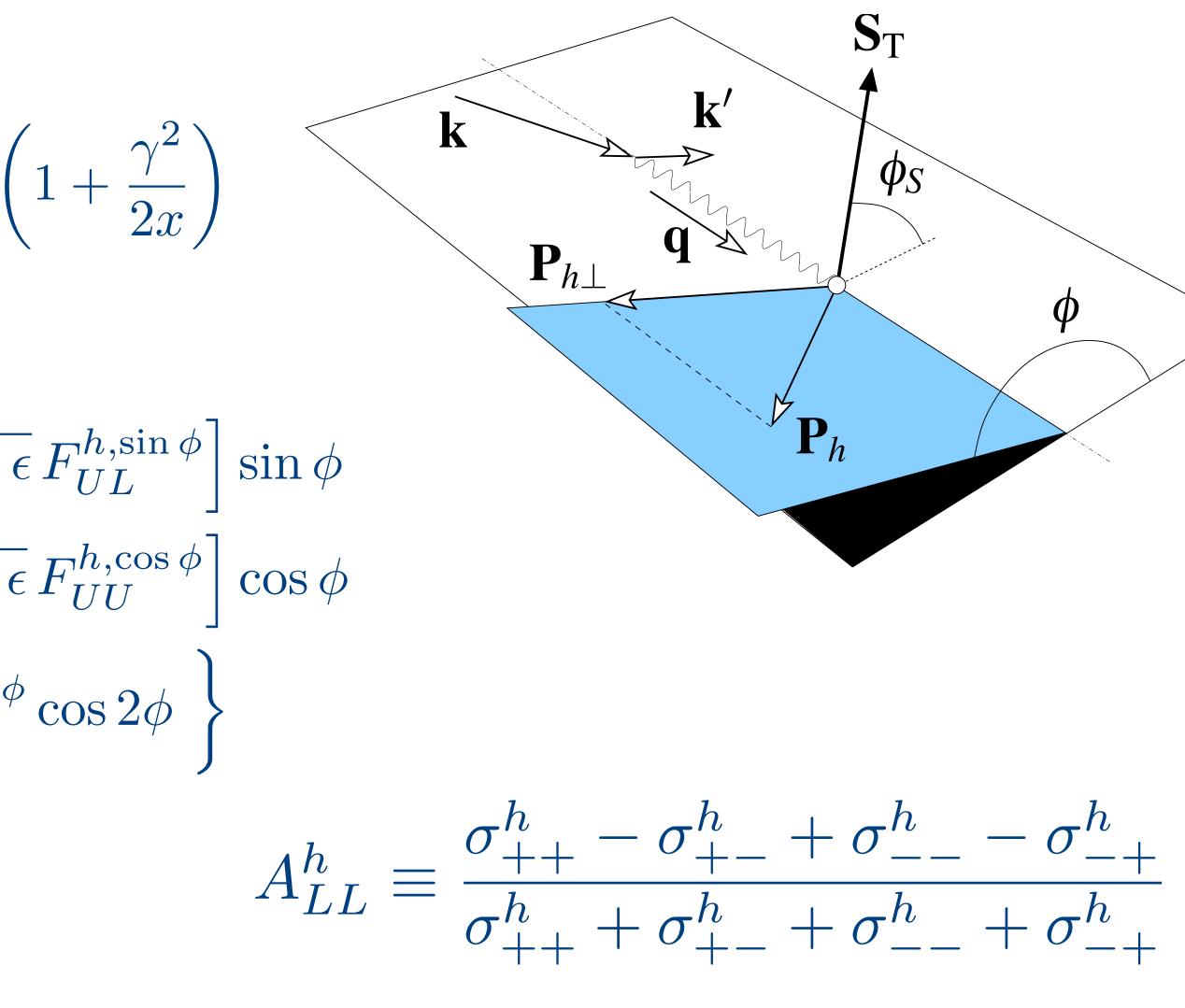
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right\}$$

$$+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}F_{LL}^{h,\cos\phi}\right]$$

$$+\Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}$$

double-spin asymmetry:

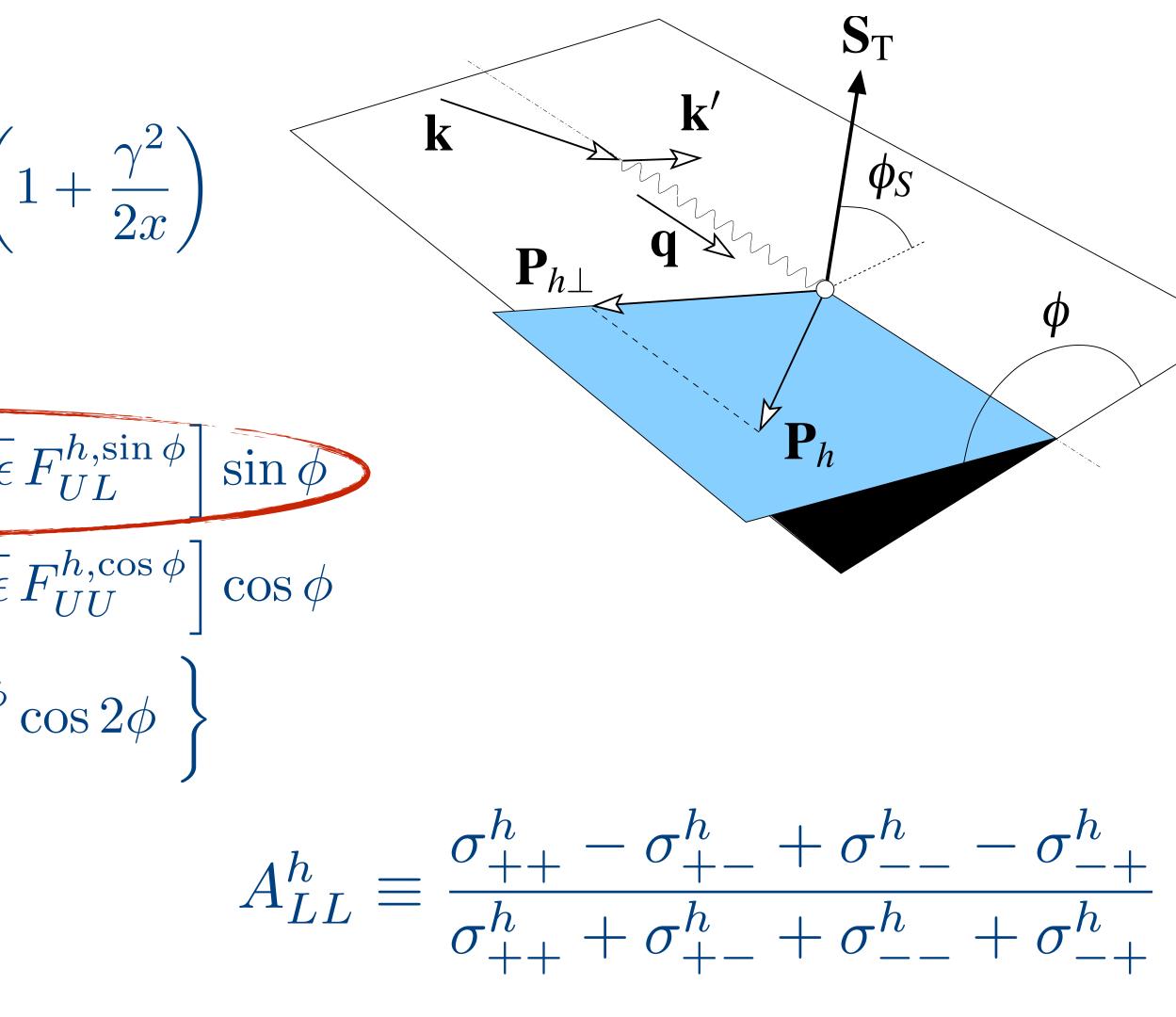
Gunar Schnell



$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

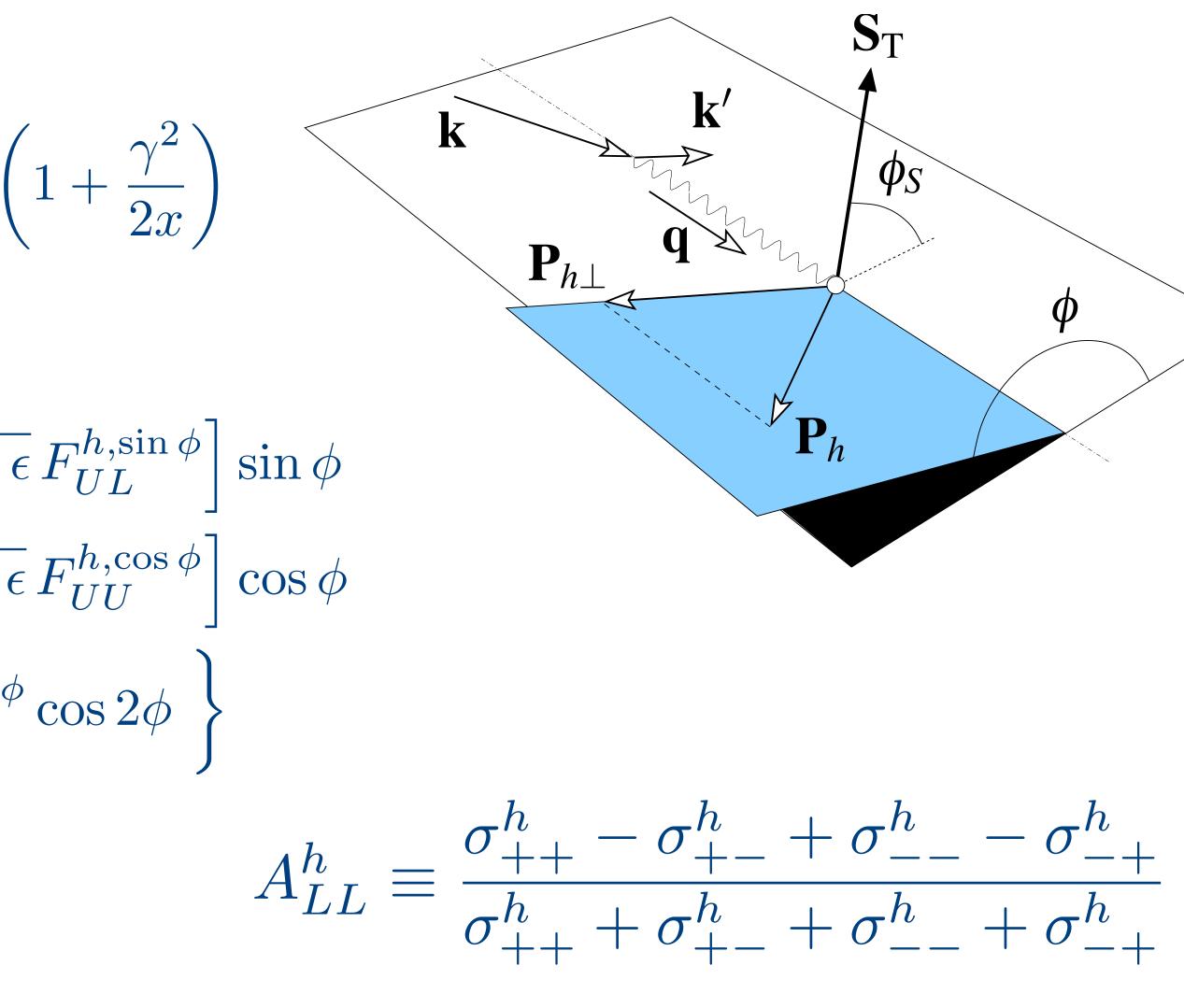
Gunar Schnell



$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} \rightarrow \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

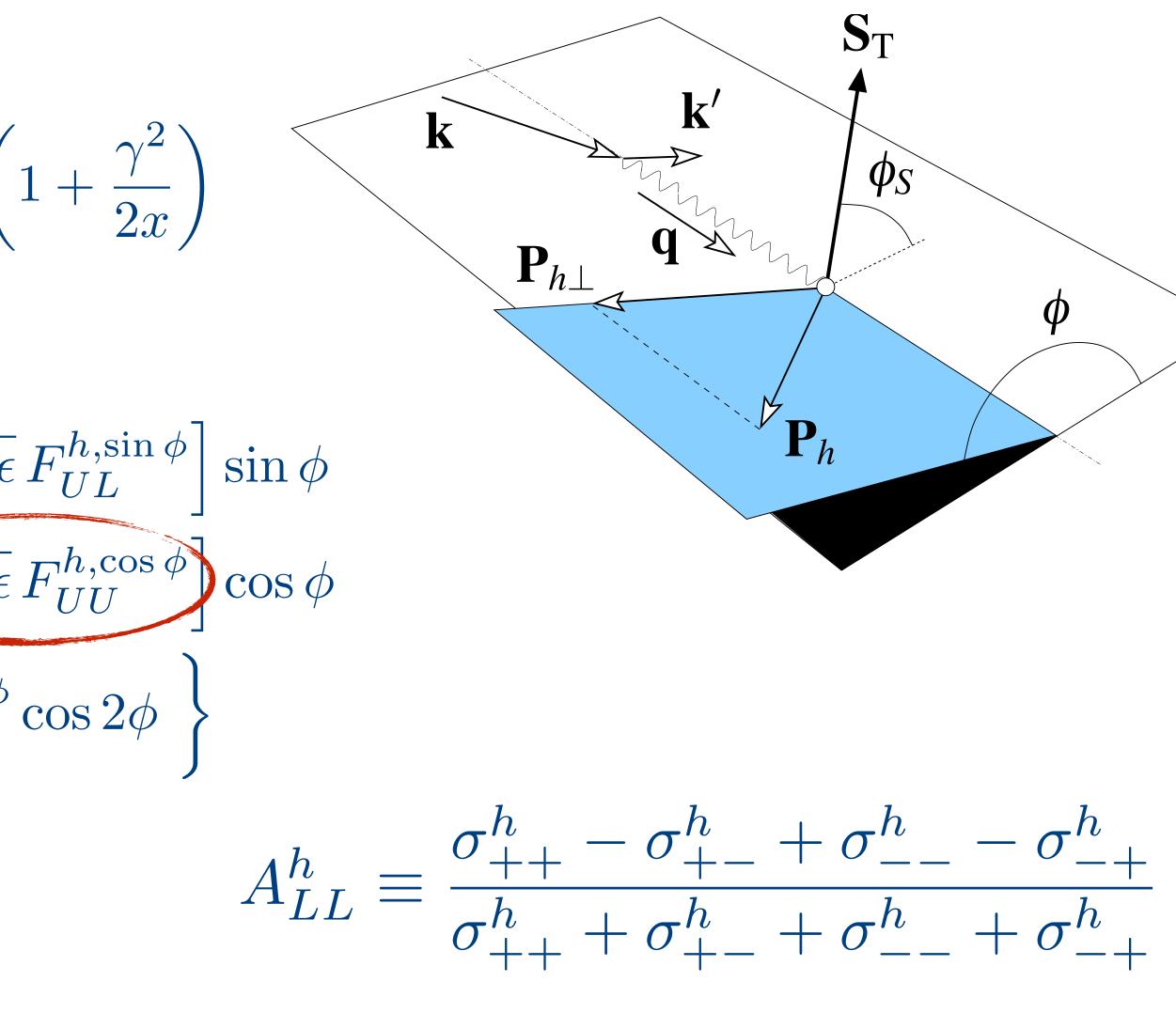
Gunar Schnell



$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right]\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

Gunar Schnell

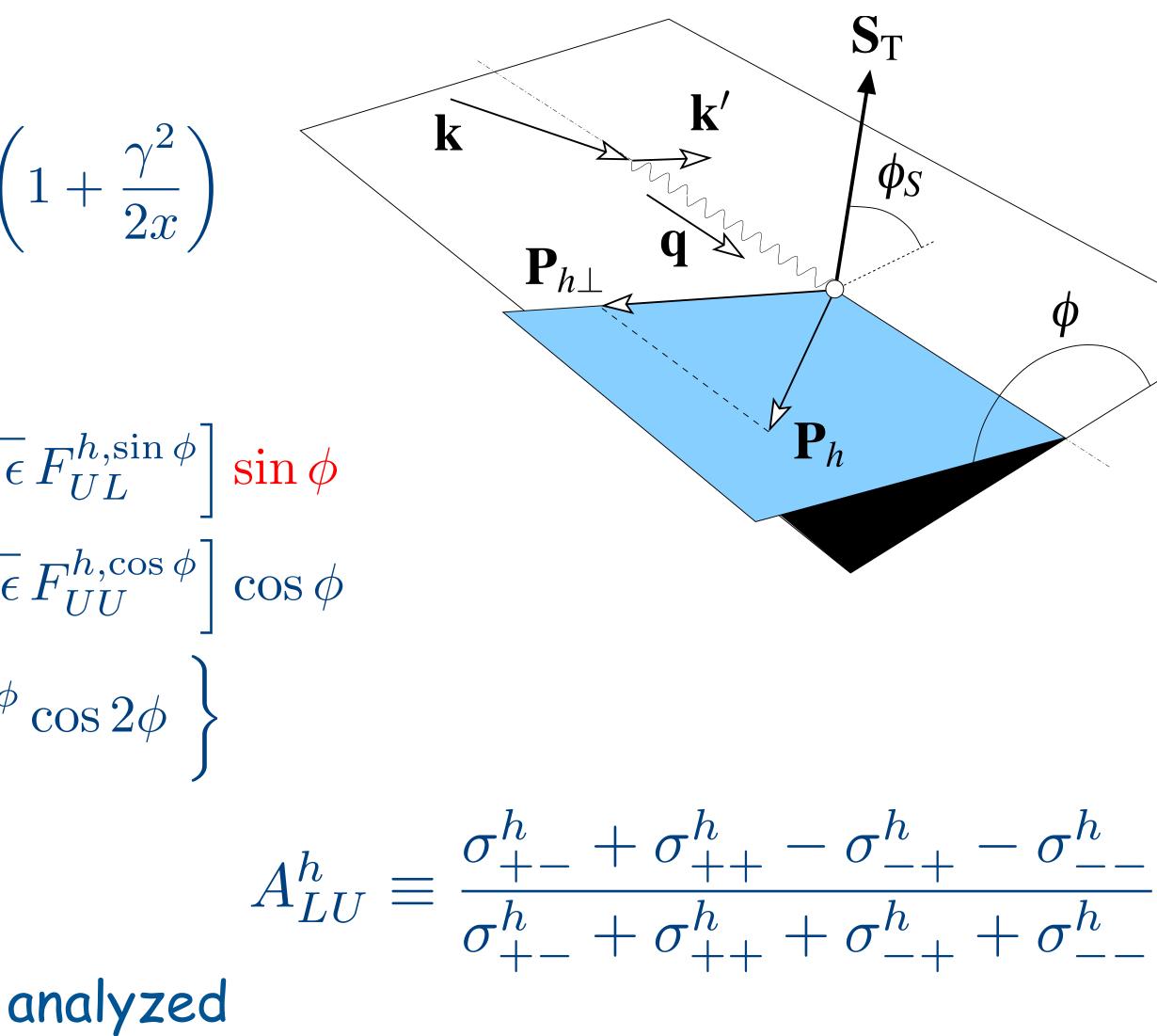


$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

single-spin asymmetry:

explicit angular dependence to be analyzed

Gunar Schnell



with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{ terms not involving transv.}\right.$$

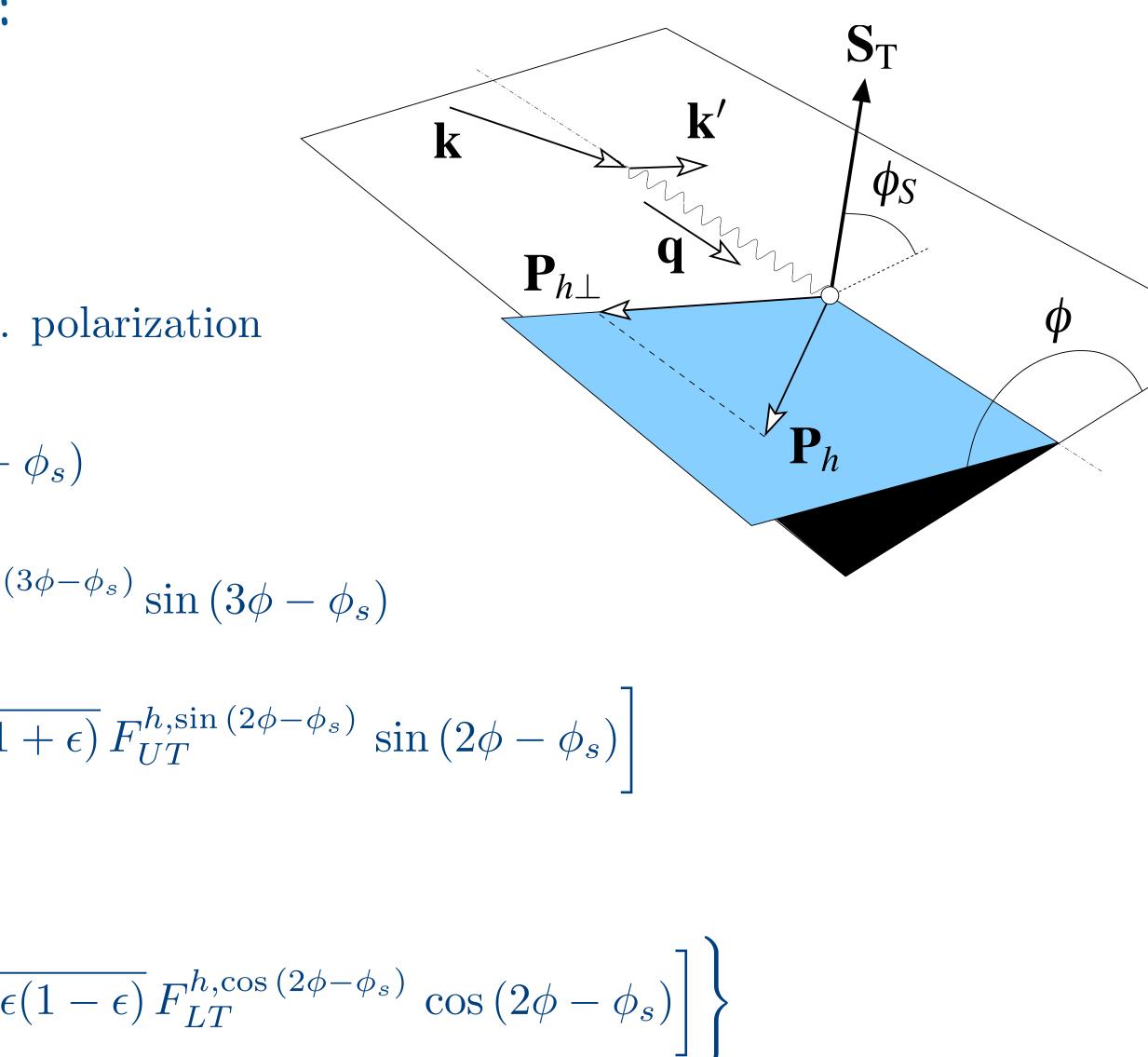
$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right] + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \delta F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\phi_{s} + \sqrt{2\epsilon}$$

Gunar Schnell

semi-inclusive DIS



IWHSS 2022 - Aug 29-31, 2022

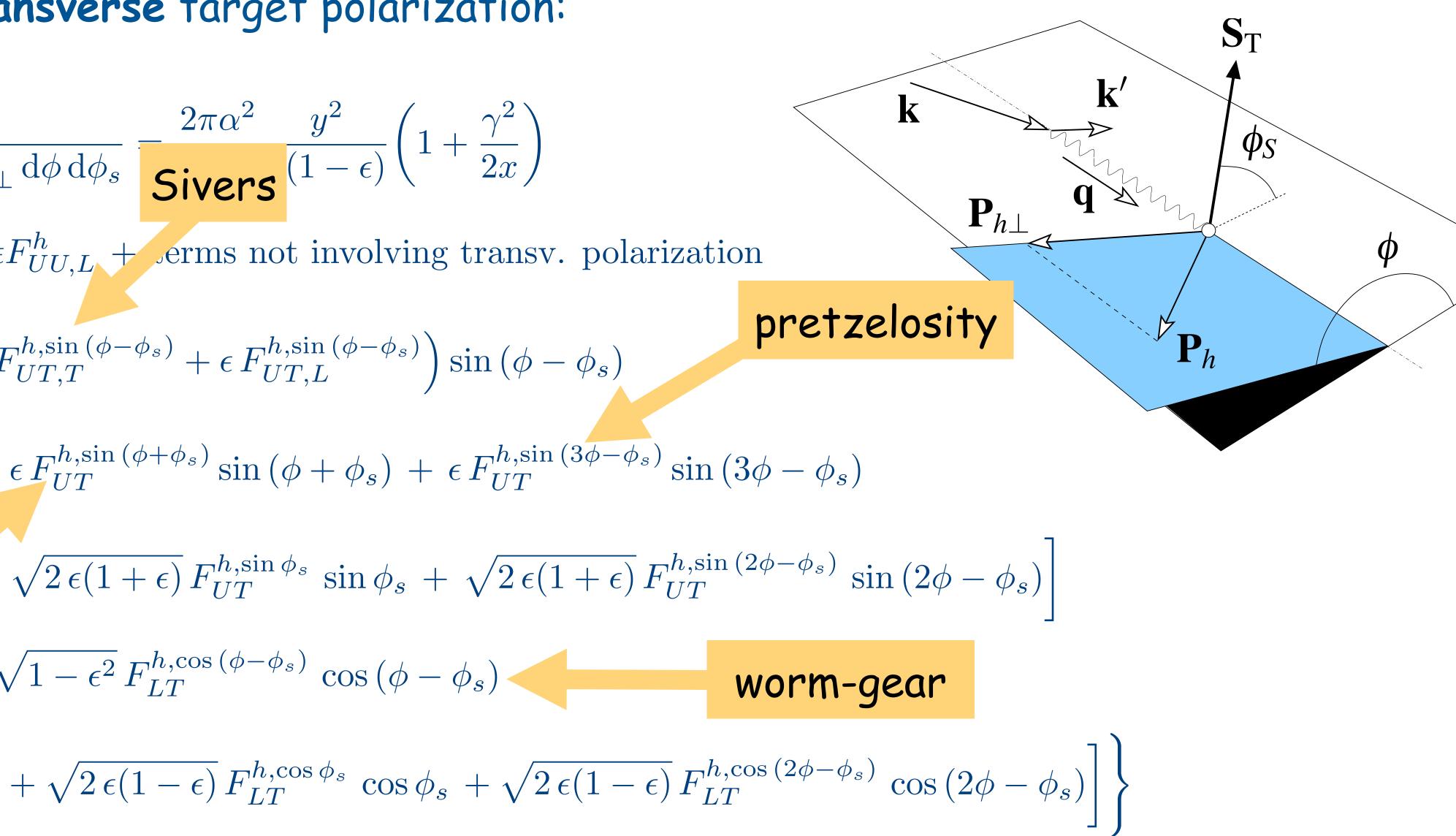
with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2} \quad y^{2}}{\mathrm{Sivers}} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \varepsilon \mathrm{rms \ not \ involving \ transv.} + S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi-\phi_{s}\right)}\right) + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{h,\sin\phi_{s}}\sin\phi_{s} + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{h,\cos\phi_{s}}\cos\left(\phi-\phi_{s}\right)$$

Gunar Schnell

tr



Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons

A. Airapetian,^{13,16} N. Akopov,²⁶ Z. Akopov,⁶ E. C. Aschenauer,⁷ W. Augustyniak,²⁵ R. Avakian,²⁶ A. Avetissian,²⁶ S. Belostotski,¹⁹ H. P. Blok,^{18,24} A. Borissov,⁶ V. Bryzgalov,²⁰ G. P. Capitani,¹¹ E. Cisbani,²¹ G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ P. F. Dalpiaz,¹⁰ W. Deconinck,⁶ R. De Leo,² L. De Nardo,^{6,12,22} E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²² S. Frullani,^{21,*} G. Gavrilov,^{6,19,22} V. Gharibyan,²⁶ F. Giordano,¹⁰ S. Gliske,¹⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H. E. Jackson,¹ S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,²⁶ T. Keri,^{13,14} E. Kinney,⁵ A. Kisselev,¹⁹ V. Korotkov,^{20,*} V. Kozlov,¹⁷ P. Kravchenko,^{9,19} V. G. Krivokhijine,⁸ L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ W. Lorenzon,¹⁶ B.-Q. Ma,³ D. Mahon,¹⁴ S. I. Manaenkov,¹⁹ Y. Mao,³ B. Marianski,²⁵ H. Marukyan,²⁶ Y. Miyachi,²³ A. Movsisyan,^{10,26} V. Muccifora,¹¹ A. Mussgiller,^{6,9} Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L. L. Pappalardo,¹⁰ R. Perez-Benito,¹³ A. Petrosyan,²⁶ P. E. Reimer,¹ A. R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² Y. Salomatin,^{20,*} G. Schnell,^{4,12} B. Seitz,¹⁴ T.-A. Shibata,²³ M. Statera,¹⁰ E. Steffens,⁹ J. J. M. Steijger,¹⁸ S. Taroian,²⁶ A. Terkulov,¹⁷ R. Truty,¹⁵ A. Trzcinski,^{25,*} M. Tytgat,¹² P. B. van der Nat,¹⁸ Y. Van Haarlem,¹² C. Van Hulse,^{4,12} D. Veretennikov,^{4,19} V. Vikhrov,¹⁹ I. Vilardi,² C. Vogel,⁹ S. Wang,³ S. Yaschenko,⁹ B. Zihlmann,⁶ and P. Zupranski²⁵

(The HERMES Collaboration)

re-analysis of longitudinal double-spin asymmetries

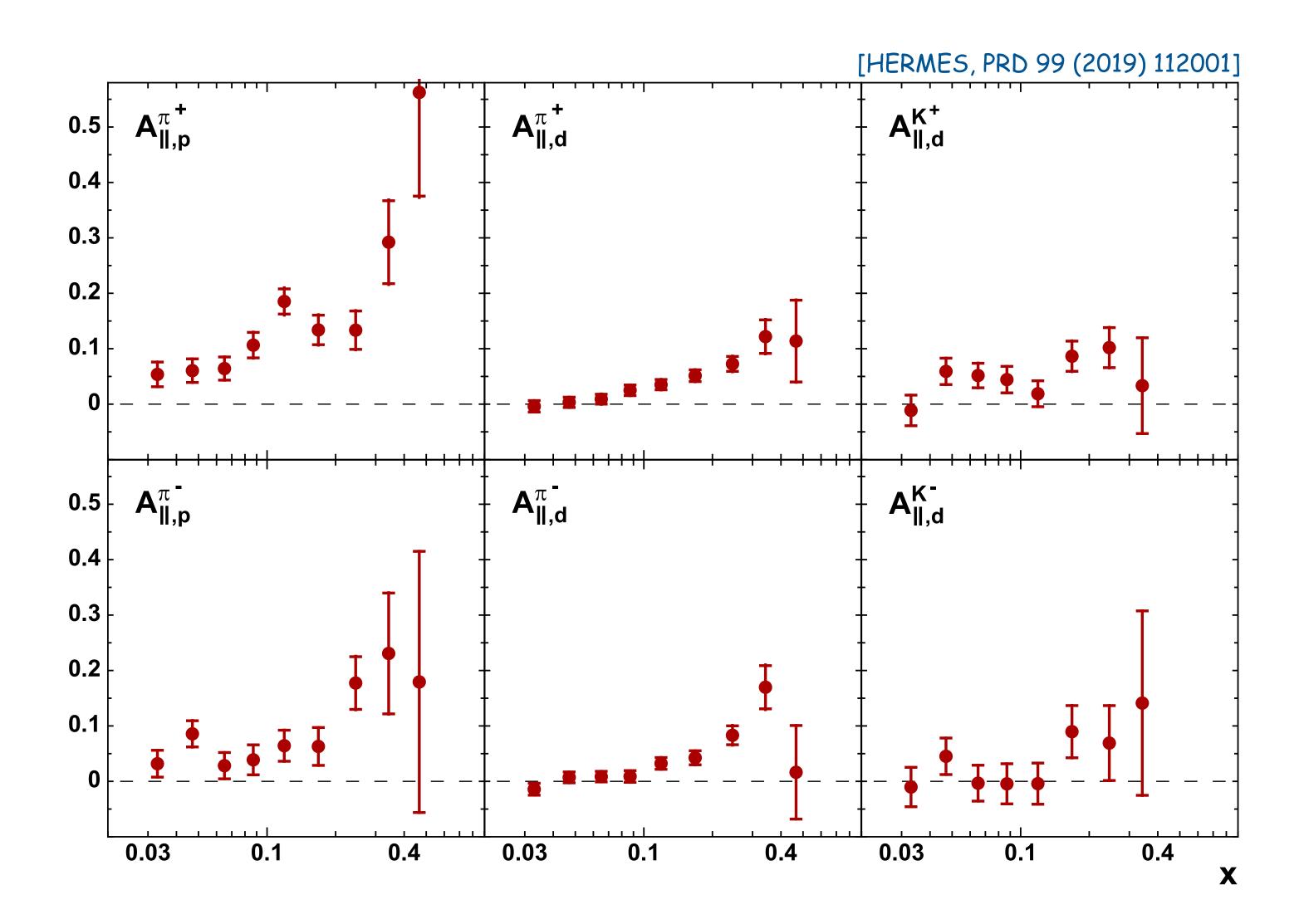
- revisited [PRD 71 (2005) 012003] A1 analysis at HERMES in order to
 - exploit slightly larger data set (less restrictive momentum range)
 - provide A_{\parallel} in addition to A_{\perp}

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h$$

R (ratio of longitudinal-to-transverse cross-sec'n) still to be measured! [only available for inclusive DIS data, e.g., used in g1 SF measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional (x, z, $P_{h\perp}$) dependences
- extract twist-3 cosine modulations ... consistent with zero

$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

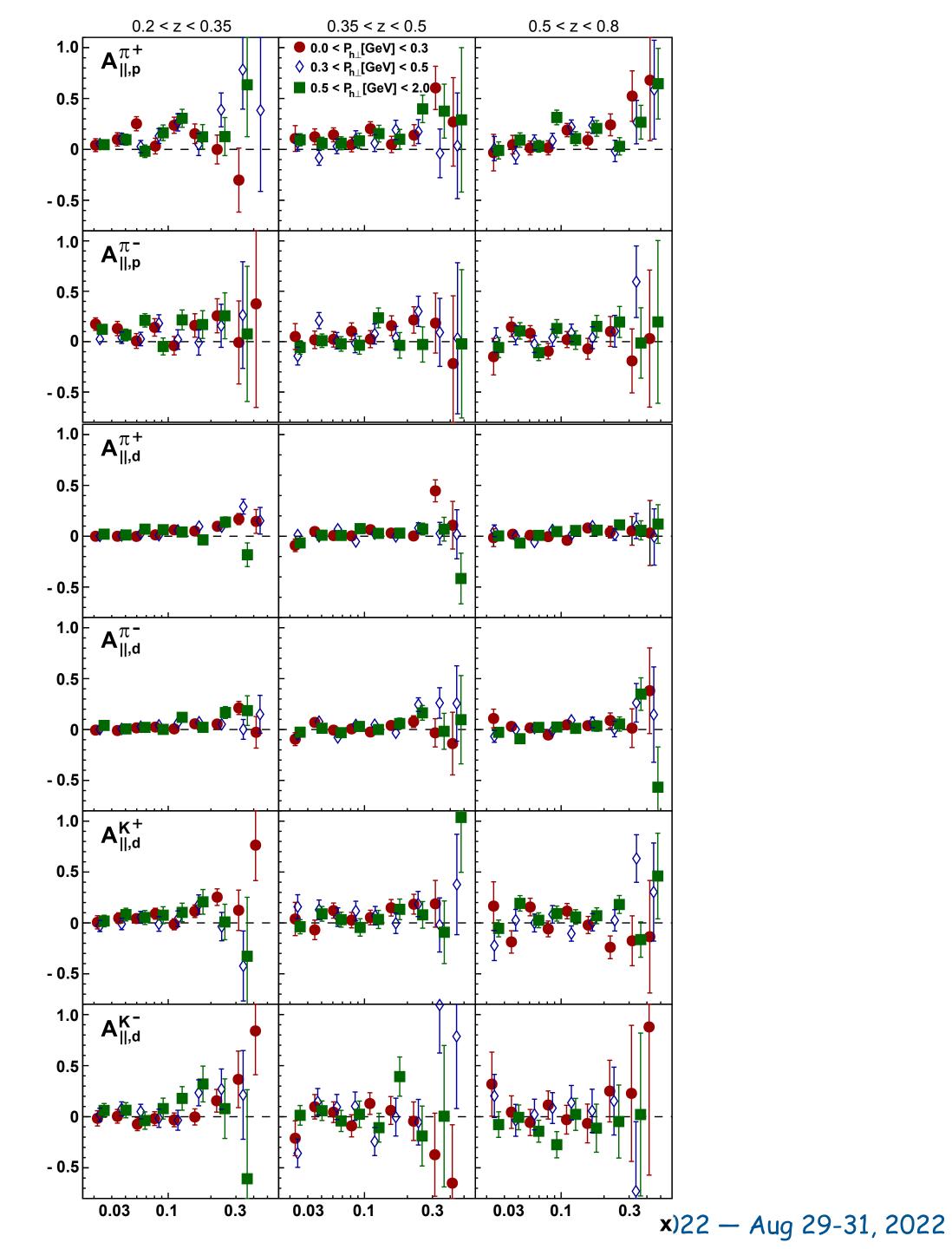


If fully consistent with previous HERMES publication [PRD 71 (2005) 012003]

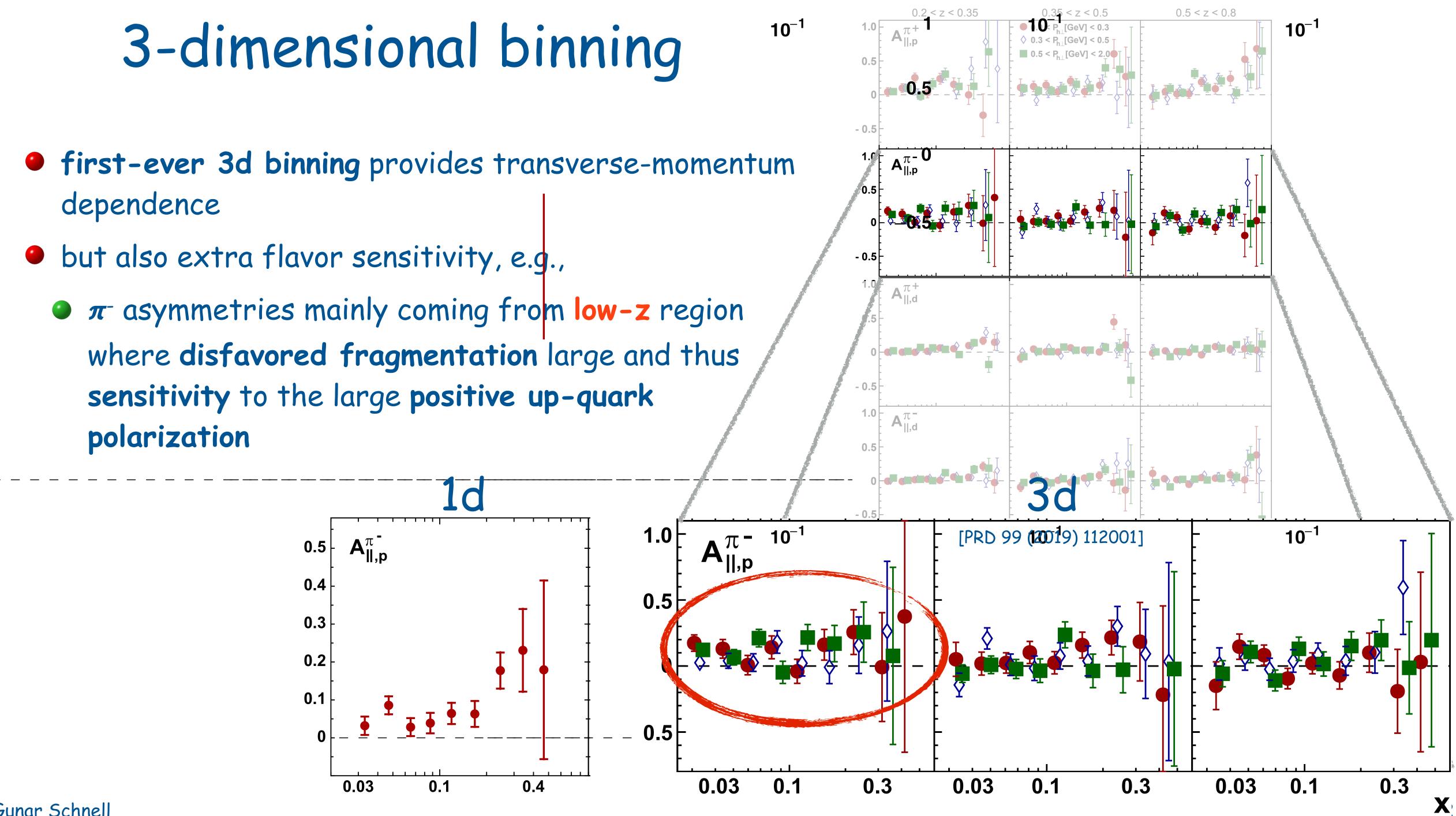
x dependence of A_{||}

3-dimensional binning

• first-ever 3d binning provides transverse-momentum dependence



- dependence
- - sensitivity to the large positive up-quark polarization



Published for SISSA by 🖉 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2. 2020

 \square

ΗE

Д

 \vdash

 \mathbb{N}

 \mathbb{N}

 \bigcirc

 \mathbb{N}

 \bigcirc

 \checkmark

 \bigcirc

 \vdash

 \bigcirc

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian, 13,16 N. Akopov, 26 Z. Akopov, 6 E.C. Aschenauer, 7 W. Augustyniak, 25 **R.** Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11 E. Cisbani,²² G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ W. Deconinck,⁶ R. De Leo,² E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²³ G. Gavrilov,^{6,19,23} V. Gharibyan,²⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H.E. Jackson,^{1,a} S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,^{6,26} E. Kinney,⁵ A. Kisselev,¹⁹ V. Kozlov,¹⁷ P. Kravchenko,^{9,19} L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ P. Lenisa,¹⁰ W. Lorenzon,¹⁶ S.I. Manaenkov,¹⁹ B. Marianski,^{25,a} H. Marukyan,²⁶ Y. Miyachi,²⁴ A. Movsisyan,^{10,26} V. Muccifora,¹¹ Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰ P.E. Reimer,¹ A.R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² A. Schäfer,²¹ G. Schnell,^{3,4,12} B. Seitz,¹⁴ T.-A. Shibata,²⁴ V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹² C. Van Hulse,¹² D. Veretennikov,^{3,19} I. Vilardi,² S. Yaschenko,⁹ D. Zeiler,⁹ **B.** Zihlmann⁶ and P. Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ⁶DESY, 22603 Hamburg, Germany

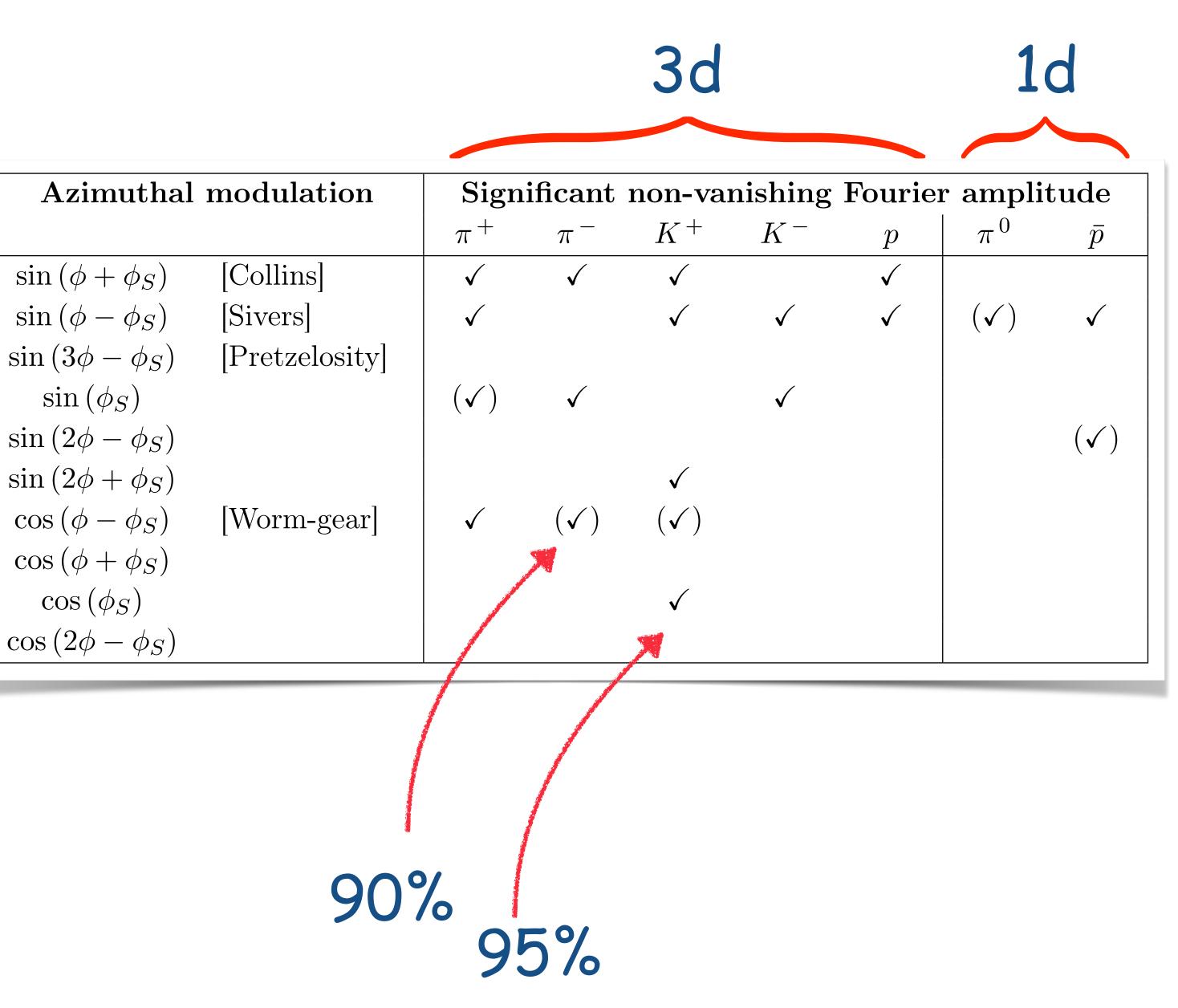
⁷DESY, 15738 Zeuthen, Germany

⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia

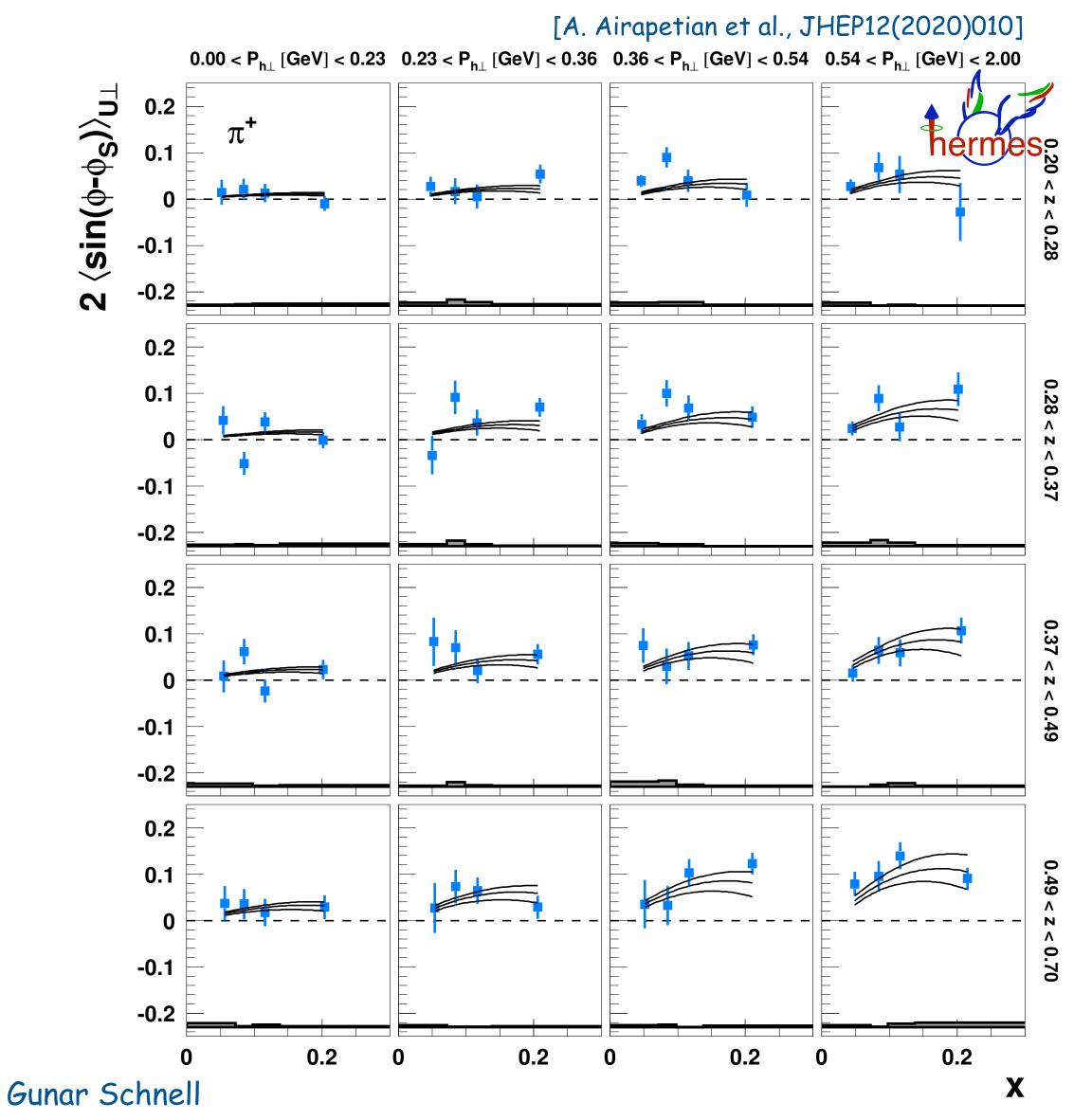
^aDeceased.

OPEN ACCESS, (c) The Authors Article funded by $SCOAP^3$.

https://doi.org/10.1007/JHEP12(2020)010



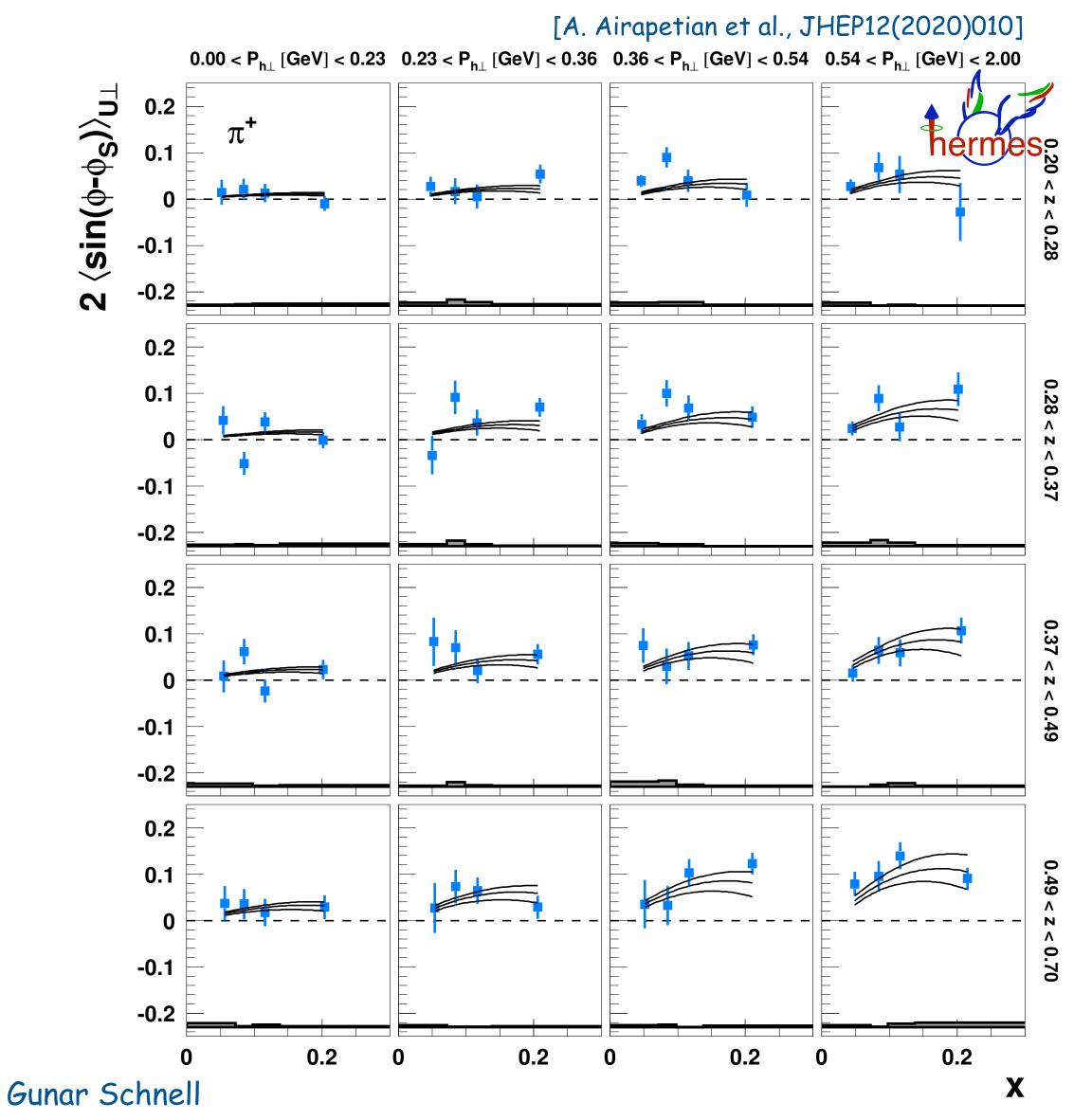
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp



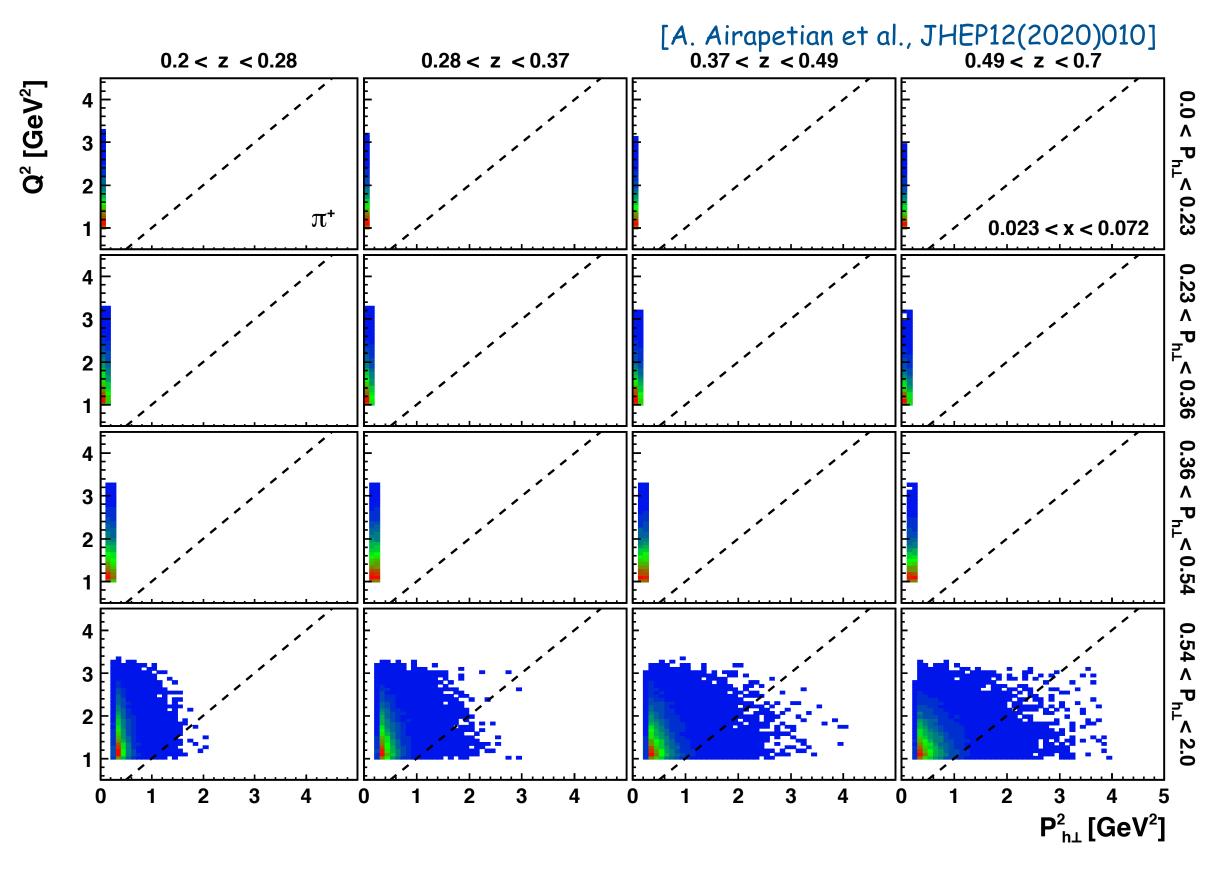
Sivers amplitudes multi-dimensional analysis

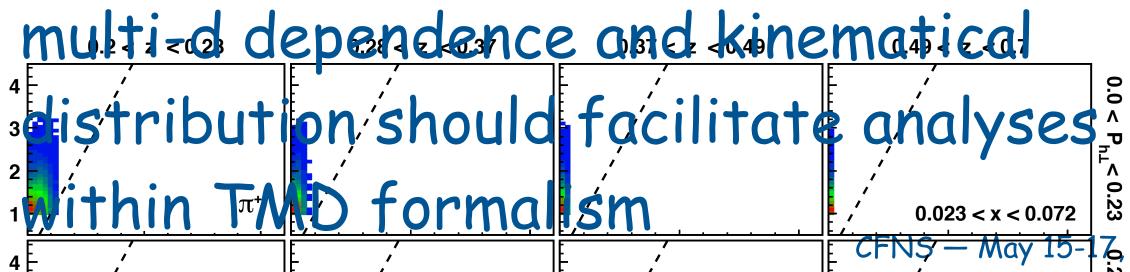
- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology

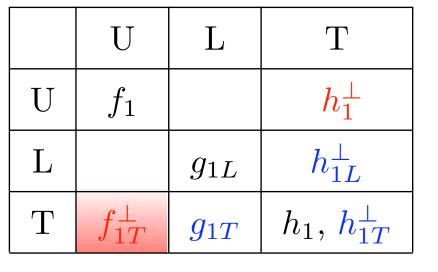
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

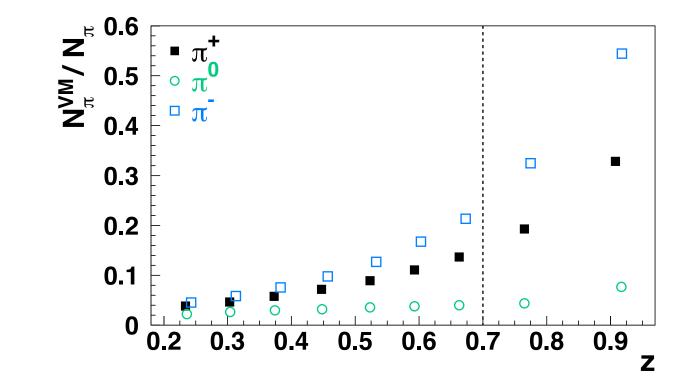


Sivers amplitudes multi-dimensional analysis



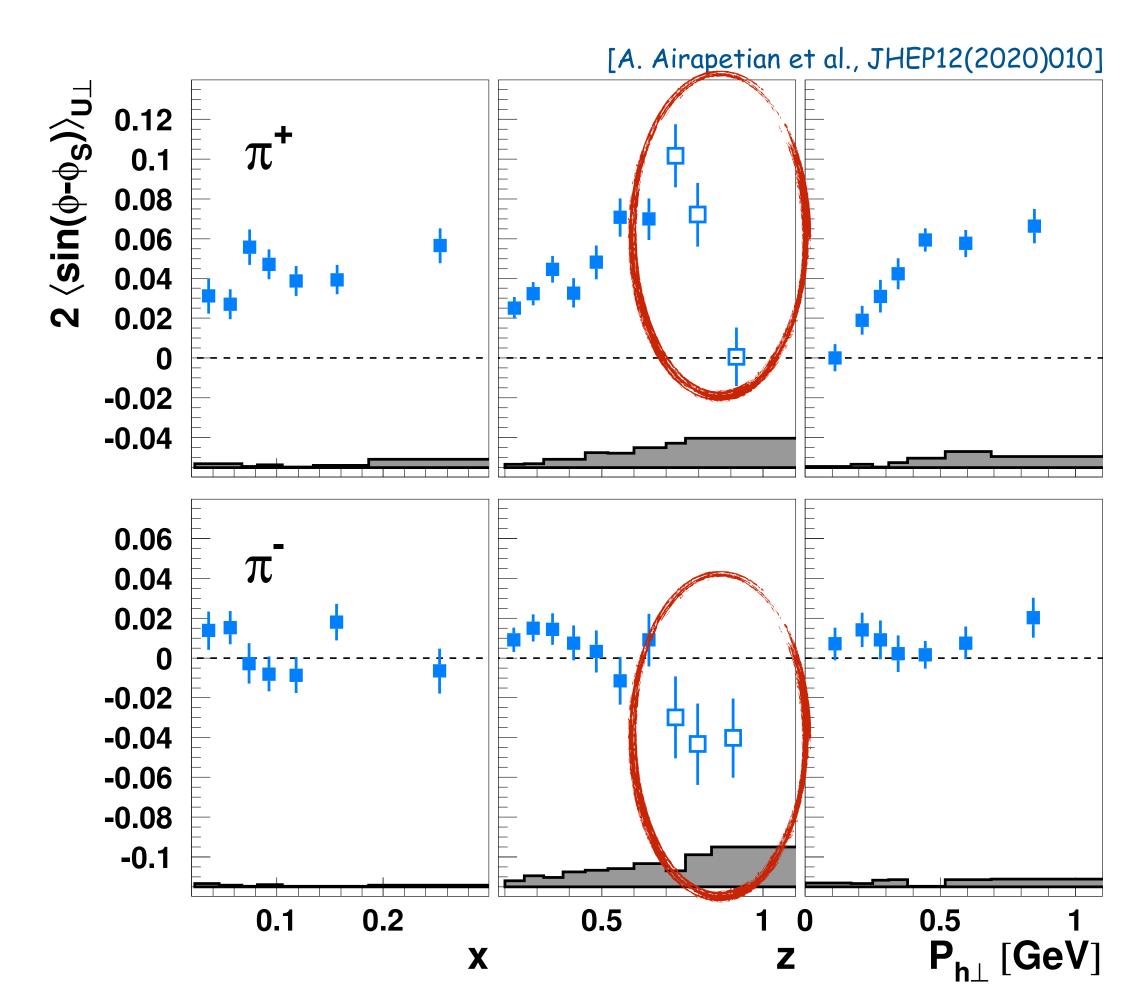






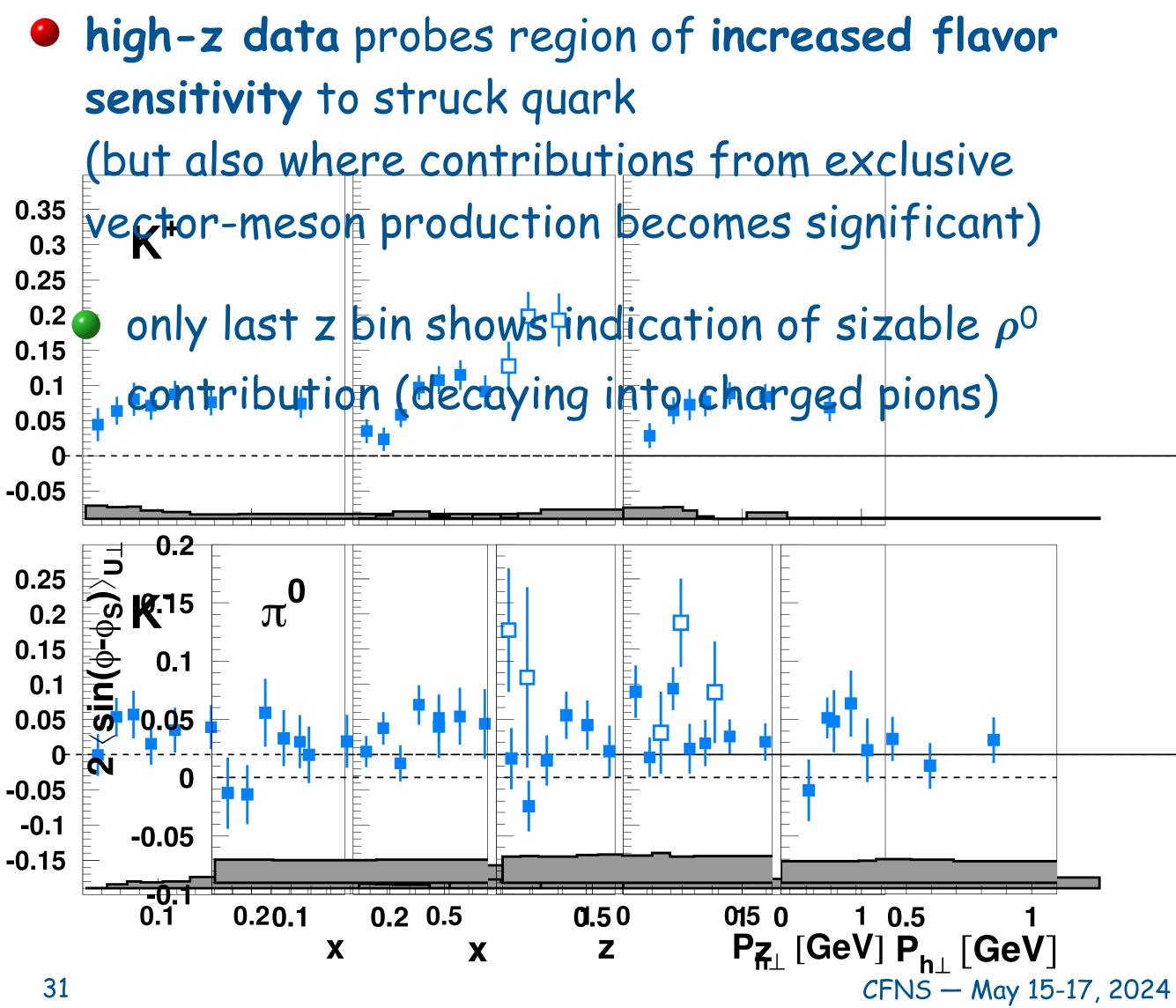
 $\langle \sin(\phi - \phi_{S}) \rangle_{U^{\perp}}$

N



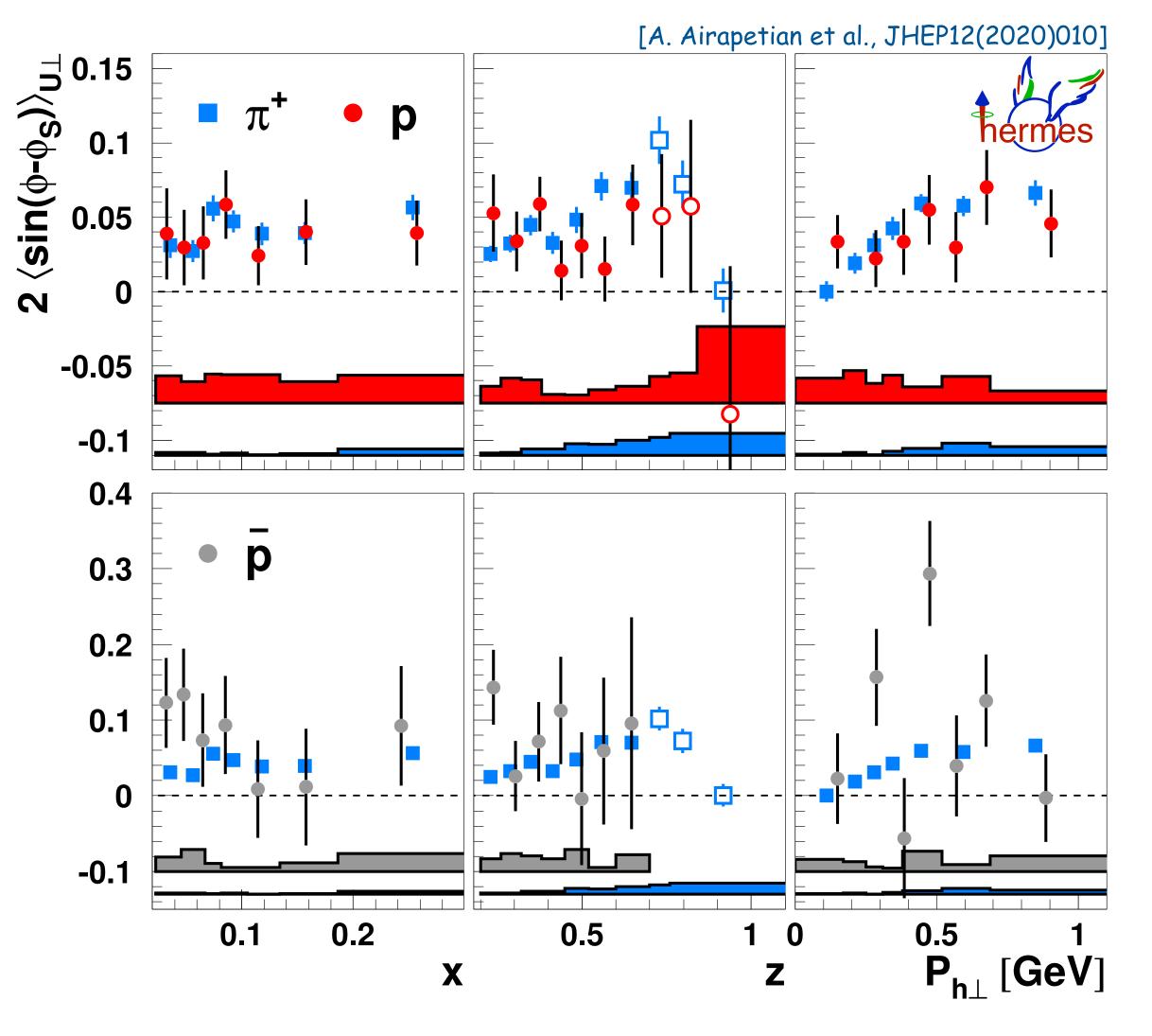
Gunar Schnell

Sivers amplitudes for pions



	I	
1		

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



Gunar Schnell

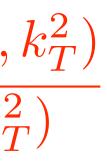
Sivers amplitudes pions vs. (anti)protons

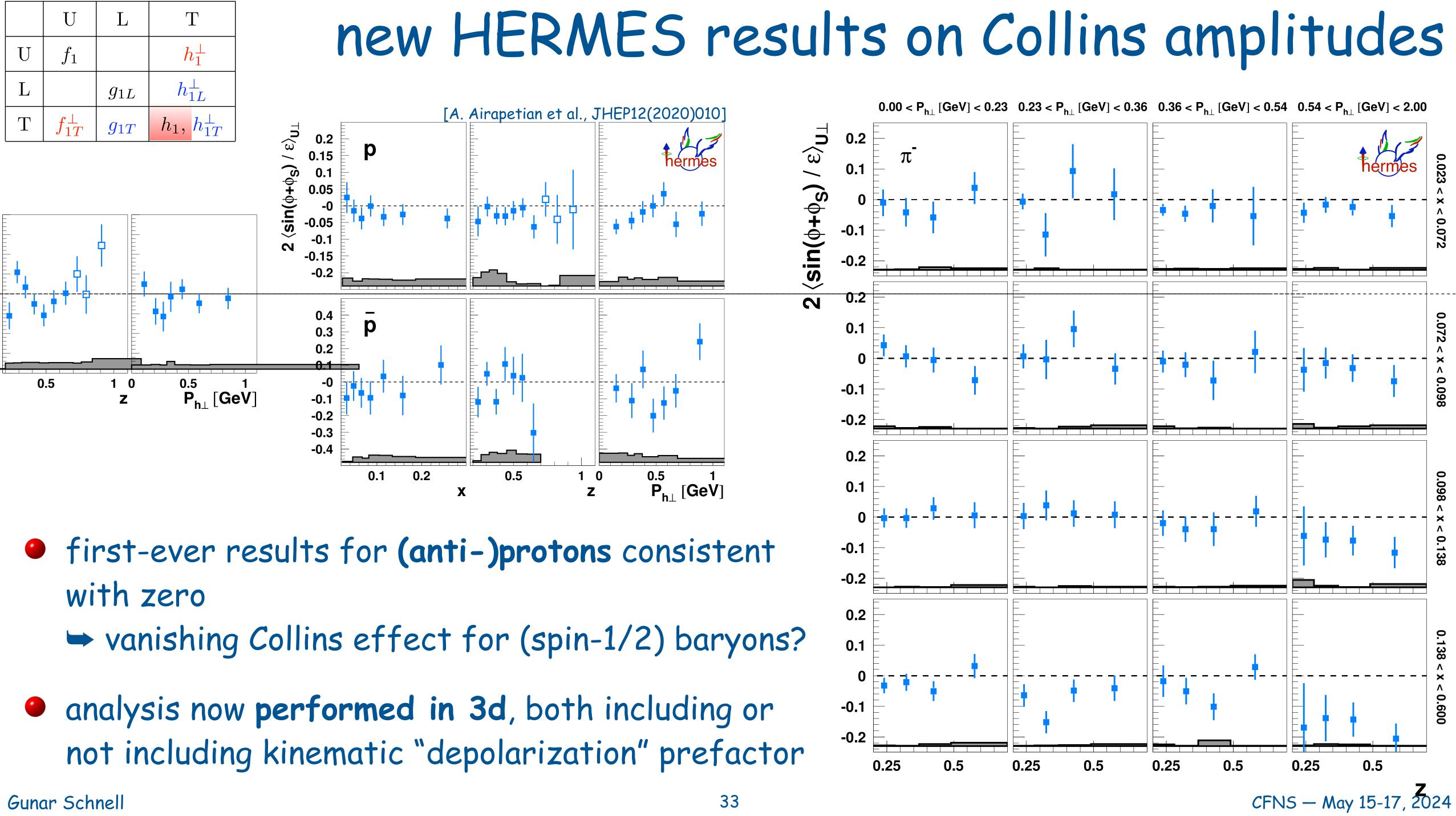
similar-magnitude asymmetries for (anti)protons and pions

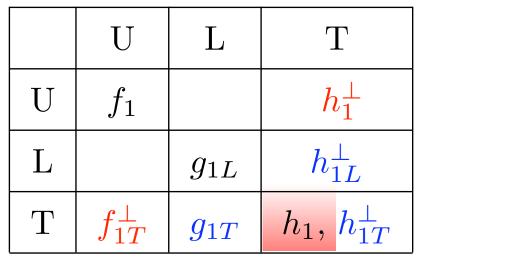
consequence of u-quark dominance in both cases?

$$2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k)}$$

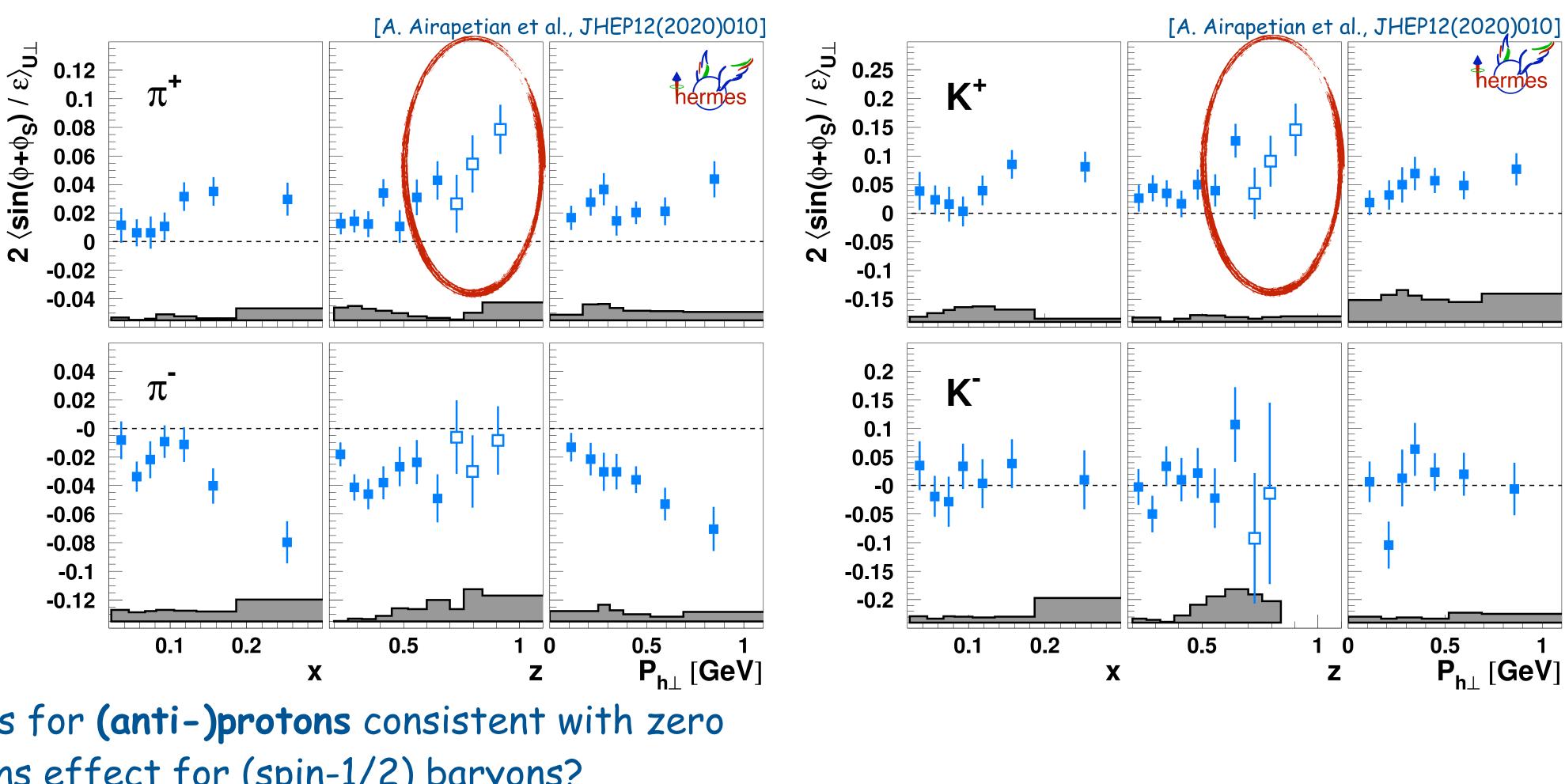
$$\approx -\mathcal{C} \, \frac{f_{1T}^{\perp,u}(x,p_T^2)}{f_1^u(x,p_T^2)}$$







new HERMES results on Collins amplitudes

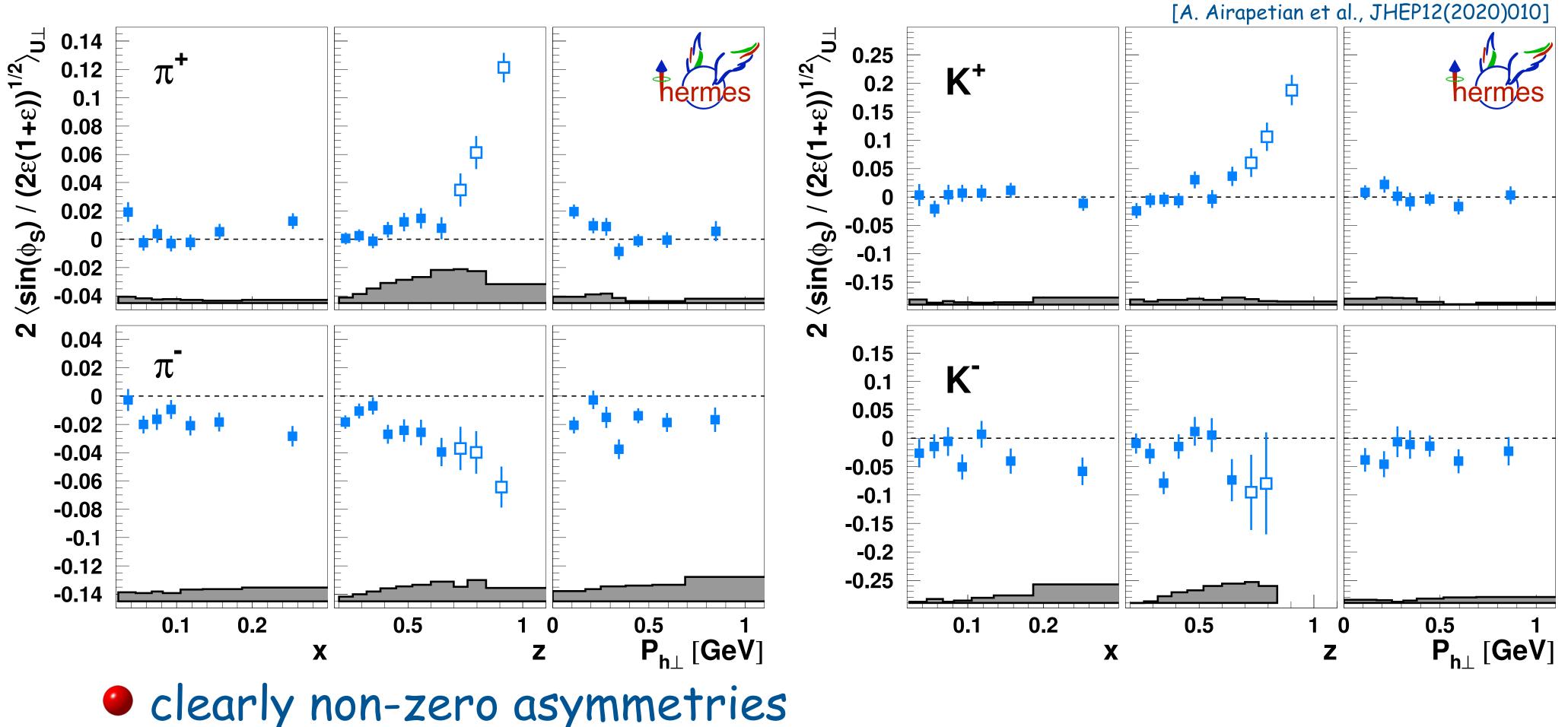


• first-ever results for (anti-)protons consistent with zero vanishing Collins effect for (spin-1/2) baryons?

analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor

high-z region with larger quark-flavour sensitivity, with increasing amplitudes for positive pions and kaons CFNS — May 15-17, 2024 Gunar Schnell 34

surprises: subleading twist, e.g., $\langle sin(\phi_s) \rangle_{UT}$



• opposite sign for charged pions (Collins-like behavior)

striking z dependence and in particular magnitude

