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Two-body systems in QED

Bound state energy of the hydrogenic system depends on the mass ratio, the nuclear charge
number Z and α

E = E(m/M, Z α, α)

There is no Hamiltonian that gives E for an arbitrary mass ratio, or/and an arbitrary α.

QED tells us that we can expand in α at constant Z α

E(m/M, Z α, α) = E (0)(m/M, Z α) + αE (1)(m/M, Z α) + α
2 E (2)(m/M, Z α) + . . .

where powers of α correspond to the number of QED loops.

We still do not know the exact form of E (i)(m/M, Z α)

→ another expansion is needed.

Expansion in Z α: NRQED

Expansion in the mass ratio: HPQED
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NRQED

For light systems, we expand in Z α keeping the mass ratio arbitrary

E (i)(m/M, Z α) = E (i,2)(m/M) + E (i,4)(m/M) + E (i,5)(m/M) + . . .

where E (i,n) ∼ (Z α)n, and some expansion terms may involve ln(Z α).

It is convenient to combine both expansions in α and Z α into one: E (i) ∼ αi

E (2) is an eigenvalue of the nonrelativistic Hamiltonian

H =
p⃗ 2

2µ
−

Z α
r

with the nonrelativistic wave function ϕ

E (4) is an expectation value = ⟨ϕ|H(4)|ϕ⟩ with the same nonrelativistic wave function ϕ

E (5) includes leading QED and the Salpeter correction: E (5) = ⟨ϕ|H(5)|ϕ⟩

Complete E (6) is quite long and has been obtained in analytic form very recently: Adkins 2023

E (7) is known in only in the nonrecoil limit

This NRQED approach can be extended to any light few electron atoms (ions).
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HPQED

For heavier systems, the expansion in m/M is preferable

E (i)(m/M, Z α) = E (i,0)(Z α) + E (i,1)(Z α) + E (i,2)(Z α) + . . .

where E (i,n) ∼ (m/M)n

For finite size nuclei this expansion is analytic and thus does not involve ln(m/M)

This approach we call the heavy particle QED (HPQED) expansion

One solves the Dirac equation in the infinite nuclear mass limit → ϕ and

G(E) =
1

E − HD
,

all (m/M)i corrections can be expressed in terms of ϕ and the Green function G(E) !!!
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Infinite nuclear mass limit

Let’s consider an arbitrary (but infinitely heavy) nucleus with a single electron or muon,
and assume that nucleus is described by the charge density ρC(r), then

(stationary) Dirac equation

(α⃗ · p⃗ + βm + VC)ψ = E ψ

where the Coulomb potential includes the finite nuclear charge distribution ρ

VC(r) = −Z α
∫

d3r ′ 1
4 π r′ ρ(|⃗r − r⃗ ′|)

It can be solved numerically with an arbitrary precision, but it does not as much how the Dirac
energy depends on the nuclear size

Z α expansion for the finite nuclear size contribution:

Efs = E (4)
fs + E (5)

fs + E (6)
fs + . . ., where

E (4)
fs = 2 π

3 ϕ2(0) Z α r2
C , and r2

C =
∫

d3r ρ(r) r2

E (5)
fs = −π

3 ϕ
2(0) (Z α)2 m r3

F , and r3
F =

∫
d3r1

∫
d3r2 ρ(r1) ρ(r2) |⃗r1 − r⃗2|3



NRQED HPQED HFS

Elastic three-photon exchange

In the infinite nuclear mass limit (Friar formula + the radiative correction)

E (6)
fns (nS) = −(Z α)6 m3 r2

C
2

3 n3

[
9

4n2
− 3 −

1
n

+ 2 γ − ln
n
2
+ Ψ(n) + ln(m rC2 Z α)

]
+(Z α)6 m5 r4

C
4

9 n3

[
−

1
n

+ 2 + 2 γ − ln
n
2
+ Ψ(n) + ln(m rC1 Z α)

]
+(Z α)6 m5 r4

CC
1

15 n5
− 1.43113

α (Z α)5

n3
m3 r2

C ,

E (6)
fns (nP1/2) = (Z α)6 m

(
m2 r2

C

6
+

m4 r4
CC

45

)
1
n3

(
1 −

1
n2

)
,

E (6)
fns (nP3/2) = (Z α)6 m5 r4

CC
1

45 n3

(
1 −

1
n2

)
,

E (6)
fns (nLJ ) = 0 for L > 1 ,

where r4
CC = ⟨r4⟩ and the effective nuclear charge radii rC1 and rC2 encode the high-momentum

contributions and are expected to be of the order of rC .
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Corrections to the infinite nuclear mass limit

which are relevant to the nuclear radii determination,
to be calculated without Z α expansion

1 finite nuclear mass corrections: → pure recoil corrections

the nuclear charge density in the momentum space ρ = ρ(⃗q 2 − q2
0),

as a consequence the e-N Breit interaction becomes modified

2 the electron self-energy and vacuum polarization,
combined with the finite nuclear mass → radiative recoil correction

3 the nuclear self-energy vs the mean square charge radius

4 nuclear polarizability effects: important for muonic atoms

5 the hyperfine structure with finite nuclear mass and size corrections
for the Zemach radius rZ determination, for example in µH.
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1: Nonperturbative pure recoil corrections

The use of the reduced mass in the Dirac equation is forbidden: for example the relativistic
recoil correction to the ground hydrogenic state is = 0

There is no generalization of the Dirac equation to the two-body system with arbitrary masses
in the form of a differential equation

There is no a Hamiltonian that describes relativistic two-body system

One expands the the binding energy in powers of the electron nuclear mass ratio:

E(m/M, Z α) = E (0) + m
M E (1) +

(
m
M

)2
E (2) + . . .

and derives a formula for each E (i)
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1: Leading order pure recoil corrections

Exact nonperturbative formula (a’la Shabaev) for the leading m/M pure recoil corrections with
including the finite nuclear size

Important: the elastic contribution in the two-photon exchange should be consistent with this pure
recoil correction

E (1) = ⟨ϕ|Σ(1)(ED)|ϕ⟩

Σ(1)(E) =
i

M

∫
s

dω
2π

Dj (ω) G(E + ω) Dj (ω)

where

G(E) = [E − HD(1 − iϵ)]−1 is the Dirac-Coulomb Green function

Dj (ω) = −4πZααi Gij
T (ω, r⃗), and αi are the Dirac matrices.

Photon propagator in the temporal gauge

Gij
T (ω, r⃗) =

∫
d3k
(2π)3

ei⃗k ·⃗r ρ(⃗k
2 − ω2)

ω2 − k⃗2

(
δ

ij −
k i k j

ω2

)
.

Breit interactions is modified by the finite nuclear size !

the recoil fns: δErec,fns = − m
M ϕ2(0) (Z α)2

[
7
6 − 2 γ − 2 ln(m r̃)

]
r2
C

important in muonic atoms
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1: Numerical results for the finite size recoil
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where
δP = Erecfs/[(m2/M)(Z α)5/π] and E (6)

recfs ≈ −m3
M (Z α)6 rC for electronic atoms
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1: Second order pure recoil correction

For the scalar nucleus

E (2) = ⟨ϕ|Σ(1)(ED)
1

(ED − HD)′
Σ(1)(ED)|ϕ⟩

+

(
d

dE

∣∣∣∣
E=ED

⟨ϕ|Σ(1)(E)|ϕ⟩
)
⟨ϕ|Σ(1)(ED)|ϕ⟩ + ⟨ϕ|Σ(2)(ED)|ϕ⟩

where

Σ(1)(E) =
i

M

∫
s

dω
2π

Dj (ω) G(E + ω) Dj (ω) ,

Σ(2)(E) =

(
i

M

∫
s

dω1

2π

)(
i

M

∫
s

dω2

2π

)
[
Dj (ω1) G(ED + ω1) Dk (ω2) G(ED + ω1 + ω2) Dj (ω1) G(ED + ω2) Dk (ω2)

+ Dj (ω1) G(ED + ω1) Dk (ω2) G(ED + ω1 + ω2) Dk (ω2) G(ED + ω1) Dj (ω1)
]
.

This second order recoil correction has not yet been calculated,
but can be important for muonic atoms !
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2: Radiative recoil correction

combined with the finite nuclear size

Evprec = δvp
i

M

∫
s

dω
2π

⟨ϕ|Dj (ω) G(ED + ω) Dj (ω)|ϕ⟩

Vacuum polarization can effectively be implemented by modification of ρ(−k2) and is important for
muonic atoms.

Eselfrec = ⟨ϕ|Σradrec(ED)|ϕ⟩ + 2 ⟨ϕ|Σrad(ED)
1

(ED − HD)′
Σrec(ED)|ϕ⟩

+ ⟨ϕ|Σ′
rad(ED)|ϕ⟩ ⟨ϕ|Σrec(ED)|ϕ⟩ + ⟨ϕ|Σ′

rec(ED)|ϕ⟩ ⟨ϕ|Σrad(ED)|ϕ⟩

Σradrec(E) =
i

M

∫
s

dω′

2 π
e2

∫ d4k

(2 π)4 i

1

k2

×
[
α
µ e−i k⃗ ·⃗r G(E + ω) Dj (ω′) G(E + ω + ω

′) j (ω′) G(E + ω)αµ ei k⃗ ·⃗r

+ Dj (ω′) G(E + ω
′)αµ e−i k⃗ ·⃗r G(E + ω + ω

′)αµ ei k⃗ ·⃗r G(E + ω
′) Dj (ω′)

+ α
µ e−i k⃗ ·⃗r G(E + ω) Dj (ω′) G(E + ω + ω

′) αµ ei k⃗ ·⃗r G(E + ω
′) Dj (ω′)

+ Dj (ω′) G(E + ω
′)αµ e−i k⃗ ·⃗r G(E + ω + ω

′) Dj (ω′) G(E + ω)αµ ei k⃗ ·⃗r
]

It has not yet been calculated numerically, but only within Z α expansion.



NRQED HPQED HFS

3: Nuclear self-energy

How to define the nuclear charge radius in the presence of nuclear self-energy ?

The effective coupling constant = Z 2 α can be large, for Mg: 122/137 > 1 !!!

∆T 00 = q2 M
p2−M2

(
4 Z2α
3 π M2 ln M2

M2−p2 + 2
3 r2

C

)
+ (q → −q)

E(n, l) = 2
3 n3 (Z α)4 µ3 r2

C δl0 + 4 Z (Z α)5

3 π n3
µ3

M2

[
ln
(

M
µ (Z α)2

)
δl0 − ln k0(n, l)

]
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4: TPE

Elastic nucleus approximation does not work well for muonic atoms

ETPE = Enucl1 + Enucl2 + Epol + . . . ,

Enucl1 = −
π

3
mα

2
ϕ

2(0)
[
Z R̃3

F (p) + (A − Z ) R̃3
F (n)

]
,

Enucl2 = −
π

3
mα

2
ϕ

2(0)
Z∑

i,j=1

⟨ϕN ||⃗ri − r⃗j |3|ϕN⟩ ,

Epol = −
4π α2

3
ϕ

2(0)
∫

ET

dE

√
2µ
E

|⟨ϕN |d⃗|E⟩|2,

Instead of the Friar radius rF , the TPE contribution involves effective Friar radii of individual
nucleons,

R3
F (p) = 2.876(246) fm3, R3

F (n) = 0.712(223) fm3,

the inter-proton |⃗ri − r⃗j |3 and a kind of the electric dipole polarizability

the difference between the elastic and the complete TPE is significant

ETPE requires subtraction of the point nucleus (Z α)5 contribution to be consistent with the
pure recoil correction
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Charge radii of light muonic atoms

Rev. Mod. Phys. 96, 015001 (2024), KP, V. Lensky, F. Hagelstein, S.S. Li Muli, S. Bacca, and R. Pohl

Order Correction µH µD µ3He+ µ4He+

(Z α)5 TPE 0.029 2(25) 1.979(20) 16.38(31) 9.76(40)
α2 (Z α)4 Coulomb distortion 0.0 −0.261 −1.010 −0.536
(Z α)6 3PE −0.001 3(3) 0.002 2(9) −0.214(214) −0.165(165)
α (Z α)5 eVP(1) with TPE 0.000 6(1) 0.027 5(4) 0.266(24) 0.158(12)
α (Z α)5 µSE(1) + µVP(1) with TPE 0.000 4 0.002 6(3) 0.077(8) 0.059(6)

EQED point nucleus 206.034 4(3) 228.774 0(3) 1644.348(8) 1668.491(7)
C r2

C finite size −5.225 9 r2
p −6.107 4 r2

d −103.383 r2
h −106.209 r2

α

ENS nuclear structure 0.028 9(25) 1.750 3(200) 15.499(378) 9.276(433)

EL(exp) experiment1 202.370 6(23) 202.878 5(34)1258.598(48) 1378.521(48)

rC this work 0.840 60(39) 2.127 58(78) 1.970 07(94) 1.678 6(12)
rC previousa 0.840 87(39) 2.125 62(78) 1.970 07(94) 1.678 24(83)

1Presented in Antognini et al (2013), Pohl et al (2016), Shuhmann et al (:2023), Krauth et al (2021)
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electronic vs muonic isotope shifts

Deuteron-proton charge radii difference: perfect agreement

r2
d − r2

p |muonic = 3.820 0(7)exp(30)theo fm2

r2
d − r2

p |electronic = 3.820 7(3) fm2
.

Helion-alpha charge radii diference: 3.6σ disagreement !!!

r2
h − r2

α|muonic = 1.063 6(6)exp(30)theo fm2 (CREMA, 2023)

r2
h − r2

α|electronic = 1.075 7(15) fm2 (Eikema, 2023)

Remarks

the result for TPE and 3PE in µHe needs to be confirmed

the finite nuclear mass effects has to be accounted for

the main limitation in muonic atoms comes from inelastic TPE and 3PE

the radiative recoil correction has been calculated only approximately

for heavier muonic atoms: the exact in Z α approach, HPQED, will be more suited
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5: HFS Fundamentals

Hyperfine splitting (HFS) comes from interaction between the electron (muon) and the nuclear spin

EF = −
2
3
⟨ψ|µ⃗ · µ⃗e δ

3(r)|ψ⟩

In the ground electronic state HFS is governed by a short range interaction

Thus, it is very sensitive to the nuclear charge and magnetic moment distribution

Measurements of HFS can be extremely precise: 14 digits for H, D

QED theory can also be quite precise: about 8, 9 significant digits

Discrepancy with theoretical predictions will signal existence of the nuclear inelastic effects
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5: HFS in the nonrecoil limit

Hyperfine splitting for the infinitely heavy nucleus is obtained from the expectation value

Ehfs = ⟨ϕ|Vhfs|ϕ⟩ .

where

Vhfs = − e α⃗ · A⃗I ,

e A⃗I (⃗r) =
e

4π
µ⃗×

[
r⃗
r3

]
fs
,

1
4π

[
r⃗
r3

]
fs
= − ∇⃗

∫
d3q

(2π)3

ρM (⃗q 2)

q⃗ 2
ei q⃗ r⃗

.

The finite nuclear size contribution can be expanded in Z α

δEnucl = δ(1)Enucl + δ(2)Enucl + . . .

δ(1)Enucl = −2 mr Zα rZ EF where rZ =
∫

d3r1
∫

d3r2 ρM (r1) ρE (r2) |⃗r1 − r⃗2|

δ(2)Efns = 4
3 EF (mrCZα)2

[
− 1

n + 2γ − ln n
2 + Ψ(n) + ln(m r̃ Zα) +

r2
M

4r2
C n2

]
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Relativistic QM versus QED for the second order correction

the second order hyperfine interaction according to relativistic quantum mechanics

E (2)
hfs = e2

〈
ψ̄

∣∣∣∣γ⃗ · A⃗ 1
̸p−γo V−m γ⃗ · A⃗

∣∣∣∣ψ〉
the second order hyperfine interaction according to QED

δE = i e2
∫

d ω
2π

∫
d3k1

(2π)3

∫
d3k2

(2π)3

ρM (k2
1 − ω2)

ω2 − k2
1 + i ϵ

ρM (k2
2 − ω2)

ω2 − k2
2 + i ϵ

×
〈
ψ̄

∣∣∣∣γ i ei k⃗1⃗ r 1
̸p − γo V + γ0 ω − m + i ϵ

γ
j e−i k⃗2⃗r

∣∣∣∣ψ〉
×

[
(µ⃗× k⃗1)

i 1
−ω + i ϵ

(µ⃗× k⃗2)
j + (µ⃗× k⃗2)

j 1
ω + i ϵ

(µ⃗× k⃗1)
i
]

coincides with the relativistic QM after changing the order (in the second term)

→ use of the Breit interaction in the second order (or on the SCF level) is doubtful.
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Finite nuclear mass correction to the hyperfine splitting

Exact in Z α formula: Ehfsrec = Ekin + Eso + Esec

Ekin =
1
M

∫
s

dω
2π

1
ω

[
⟨ϕ|Dj

T (ω) G(ED + ω) ∂ j (Vhfs(ω))|ϕ⟩ − ⟨ϕ|∂ j (Vhfs(ω)) G(ED + ω) Dj
T (ω)|ϕ⟩

]
+ δhfs

i
M

∫
s

dω
2π

⟨ϕ|Dj
T (ω) G(ED + ω) Dj

T (ω)|ϕ⟩ ,

Eso = −
(g − 1)

M2
ϵ

ijk I i
∫

s

d ω
2π

ω ⟨ϕ|Dj
T (ω) G(ED + ω) Dk

T (ω)|ϕ⟩ ,

Esec =

(
4π Z α

2 M
g
)2

ϵ
ijk Ik

∫
s

d ω
2π

1
ω

⟨ϕ|(α⃗× ∇⃗)i D(ω) G(ED + ω) (α⃗× ∇⃗)j D(ω) |ϕ⟩ ,

where

Vhfs(ω, r⃗) = e µ⃗ · α⃗× ∇⃗D(ω, r) ,

such that Vhfs(0, r) = Vhfs(r), and

D(ω, r) =
∫

d3k
(2π)3

ei⃗k ·⃗r ρ(⃗k
2 − ω2)

ω2 − k⃗2
.
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Recoil HFS: expansion in Z α

δErec = δ
(1)Erec + δ

(2)Erec + . . .

δ
(1)Erec = − EF

Z α
π

m
M

3
8

{
g
[
γ −

7
4
+ ln(m rM2 )

]
− 4

[
γ +

9
4
+ ln(m rEM )

]
−

12
g

[
γ −

17
12

+ ln(m rE2 )

]}

δ
(2)Erec = EF (Z α)2 m2

r

m M

{
−

ln(Z α)
4

[
− 6 +

7
2

g +
14
g

]
−

ln 2
4

[
−2 +

11
2

g +
46
g

]
+

1
36

[
−

81
2

+
31
2

g +
279
g

]}
.

δ(1)Erec is about 10% of the leading Zemach contribution for light elements, however the elastic
form-factor assumption is not necessarily a good approximation !

δ(2)Erec is an of result of complicated calculations by Bodwin and Yennie (1988) in the point nucleus
limit and has not yet been verified.

We aim to verify their result using exact formulas analytically and numerically (to all orders in Z α)
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Accurate QED theory of HFS in light atoms (ions)

The complete hyperfine splitting is conveniently represented as

Ehfs = EF (1 + δ) ,

δ represents the correction to the Fermi energy

δ = κ + δ
(2) + δ

(3) + δ
(4) + δ

(1)
nuc + δ

(1)
rec + δ

(2)
nuc + δ

(2)
rec ,

δ(i), δ(i)nuc, and δ(i)rec are the QED, nuclear, and recoil corrections of order αi

coefficients δ(i) can be calculated for 1-, 2-, and 3-electron atoms and ions very accurately
using NRQED theory

What is left, are unknown nuclear polarizability effects
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Discrepancies in µD hfs

the “experimental value” of the nuclear-structure correction in µD(2S) hfs

δEnucl,exp = Ehfs(exp) − Ehfs(point) = 0.0966(73) meV

the numerical value of the Zemach correction with rZ = 2.593(16) fm is

δEZem = −0.1177(33) meV, opposite sign !

including the nuclear vector polarizability and
the inelastic three-photon exchange (10% effect)

δEnucl,theo = 0.028 3(86) meV

the difference

δEnucl,theo − δEnucl,exp = 0.058 3(113)

Nuclear structure effects in hfs are not well understood,
arXiv:2311.13585 is claiming an agreement without considering 3PE.
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Contributions to HFS in 3He+ ion

Term Value ×EF [kHz]

1 1 −8 656 527.892 (7)
κ 0.001 159 65 −10 038.6
δ(2) 0.000 127 07 −1 100.0
δ(3) −0.000 019 49 168.7
δ(4) −0.000 000 75 6.5
δ(1)rec −0.000 012 17 (60) 105.4 (5.3)
δ(2+)

nuc −0.000 002 89(3) 25.0
δ(2)rec −0.000 001 16 (18) 10.1 (1.6)

theory without δ(1)nuc 1.001 250 26 (63) −8 667 350.8 (5.5)
experiment (Blaum:2022) 1.001 053 77 −8 665 649.865 77 (26)
δ(1)nuc −0.000 196 49 (63) 1 701.0 (5.5)

r̃Z this work 2.600 (8) fm
rZ (Blaum:2022) 2.608 (24) fm
rZ (Sick:2014) exp 2.528 (16) fm
r̃Z (µHe+:2023) 2.420(16) fm

r̃Z − rZ (exp) = 0.072 (18) fm
r̃Z (µHe+) - rZ (exp) = −0.108 (18) fm

Polarizability contribution is relatively small in He+, but for µHe+ is of opposite sign !
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More accurate picture of nuclear structure effects in HFS

δ
(1)Ehfs = ELow + E1nuc + Epol

E1nuc = −
8π
3
α

2 ψ2(0)
mp + m

s⃗ ·
〈∑

a

ga s⃗a raZ
〉

ELow =
α

16
ψ

2(0) σ⃗
∑
a ̸=b

ea eb

mb

〈
4 rab r⃗ab × p⃗b +

gb

rab

[⃗
rab (⃗rab · σ⃗b) − 3 σ⃗b r2

ab
]〉

For the case of an nS state of D, Low’s correction becomes

δELow ≈ −2µαEF
gn

gd
⟨R⟩ , (1)

where R is the distance of the proton from the center of mass, ⟨R⟩ ≈ 1.63 fm.

It is similar to the Zemach correction, but with the important difference that the deuteron
g-factor is replaced by the neutron one, but they have a opposite sign !

The calculation by by Friar and Payne in 2005 for the 1S state of deuterium,
(δELow(eD) + δE1nucl)/EF = 141 ppm, is in approximate agreement with the experiment,
(Eexp

hfs − E theo
hfs )/EF = −3 ppm.
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