

Charge radii measurements of exotic nuclei from laser spectroscopy

MIT Workshop on NREC 2024 *Stony Brook University, May 2024*

1

Open questions in Nuclear and Particle Physics

How do nuclear phenomena emerge from QCD? ⁸He ¹¹Li ⁵²Ca ²²⁴Ra

2 Isotope shift measurements of exotic nuclei can provide answers to these questions

Overview

- Laser spectroscopy
- Charge radii & Nuclear Structure
- Charge radii & Nuclear Matter
- Isotope shifts & BSM Physics
- Summary & Outlook

[Yang, Wang, Wilkins, Garcia Ruiz. Prog. Part. Nucl. Phys. 129, 104005 (2023)] [Koszorús, Groote, Cheal, Campbell, Moore. Eur. Phs. J. C 60, 20 (2024)] [Nörtershäuser, Moore. Handbook Nucl. Phys 1, (2022)]

Laser spectroscopy -> Isotope Shifts

Laser spectroscopy -> Isotope Shifts

Laser spectroscopy -> Isotope Shifts

1												Nörtershäuser's talk Ohayon's talk					18
1 H 1.008	2	Studied by laser spectroscopy											14	15	16	17	2 He 4.003
3 Li 6.941	4 Be 9.012	To be studied in the current/new KI facilities												7 N 14.007	8 O 15.999	9 F 18.999	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Se 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.789
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Te [98]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.43	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]
87 Fr [223]	88 Ra [226]	89-103 #	104 Rf [265]	105 Db [268]	106 Sg [271]	107 Bh [270]	108 H s [277]	109 Mt [276]	110 D s [281]	111 Rg [280]	112 Cn [285]	113 Nh [286]	114 Fl [289]	115 Me [289]	116 Lv [293]	117 T s [294]	118 Og [294]
* Lanthanide series			57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm [145]	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.91	68 Er 167.26	69 Tm 168.91	70 Yb 173.05	71 Lu 174.97
# Actinide series			89 Ac [227]	90 Th 232.01	91 Pa 231.04	92 U 238.03	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]

✓High resolution (< MHz)</p>

- High efficiency (<100 ions/s) ?</p>
- High selectivity (>1/10⁶) ?
- Short time scales (< 1 s)?</p>

RILIS/ISOLDE @ CERN

COLLAPS/ISOLDE @ CERN

CRIS/ISOLDE @ CERN

RISE/BECOLA @ FRIB

Overview

- Laser spectroscopy
- Charge radii & Nuclear Structure
- Charge radii & Nuclear Matter
- Isotope shifts & BSM Physics
- New Opportunities
- Summary & Outlook

Warning: A few selected results. A non-exhaustive, biased selection.

Evolution of the nuclear size away from stability

How do nuclear phenomena emerge from QCD?

CERN

Evolution of the nuclear size away from stability

Nuclear charge radii across closed-shells

Similar trends for neutron-rich

[Koszorus et al. Nature Phys. (2021)] [Degroote et al. Nature Phys. 16, 620 (2020)] [Kaufmann Phys. Rev. Lett. 124, 132502 (2020)] [Garcia Ruiz & Vernon EPJ A 56, 136 (2020)] [Gorges et al. Phys. Rev. Lett. 122, 192502 (2019)] [Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

Evolution of nuclear collectivity between closed-shells

Evolution of nuclear collectivity between closed-shells

[Vernon et al. Nature 607, 260(2022)] [Karthein et al. Accepted Nature Phys. (2024)]

Shape staggering away closed-shells

RILIS 199192 CERI

Open Challenge: Simultaneous reproduction of charge radii and binding energies has been a long-standing challenge for nuclear theory.

Overview

- Laser spectroscopy
- Charge radii & Nuclear Structure
- Charge radii & Nuclear Matter
- Isotope shifts & BSM Physics
- New Opportunities
- Summary & Outlook

Can we use the properties of nuclei to constraint the properties of nuclear matter?

Radii of mirror nuclei & equation of state

Radii of mirror nuclei & equation of state

BEC

$$E(\rho,\delta) = E(\rho,0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$$

Radii of mirror nuclei & equation of state

Overview

- Laser spectroscopy
- Charge radii & Nuclear Structure
- Charge radii & Nuclear Matter
- Isotope shifts & BSM Physics
- New Opportunities
- Summary & Outlook

Isotope shifts & BSM Physics

Atom Nuclear

$$\delta\nu^{A,A'} = \mathbf{K_{MS}} \frac{M_{A'} - M_A}{M_{A'}M_A} + \mathbf{F}\delta\langle r^2 \rangle^{A,A'}$$

[Counts et al. Phys. Rev. Lett. 125, 123002 (2020)]

Isotope shifts & BSM Physics

Atom Nuclear

$$\delta\nu^{A,A'} = \mathbf{K}_{MS} \frac{M_{A'} - M_A}{M_{A'}M_A} + \mathbf{F}\delta\langle r^2 \rangle^{A,A'} + \alpha_{NP} X_i \gamma_{AA'}$$

[Berengutet al. Phys. Rev. Lett 120, 091801 (2018)] [Counts et al. Phys. Rev. Lett. 125, 123002 (2020)] [Hur et al. Phys. Rev. Lett. 128, 163201 (2022)]

Isotope shifts & BSM Physics

- Experiments with more isotopes (exotic nuclei)

Summary & Outlook

Isotope shift measurements in Exotic Atoms allows for the exploration of rich physics phenomena

How do nuclear phenomena emerge from QCD?

Open Challenges:

- Description of nuclear charge radii has been a long-standing challenge for ab-initio nuclear theory
- Light nuclear systems require precise experiments and atomic theory calculations.

Summary & Outlook

Isotope shift measurements in Exotic Atoms allows for the exploration of rich physics phenomena What are the properties of dense How do nuclear phenomena emerge from QCD? nuclear matter? ⁸He 11**Li** Nuclei 224Ra Neutron star

Open Challenges:

- Description of nuclear charge radii has been a long-standing challenge for ab-initio nuclear theory
- Light nuclear systems require precise experiments and atomic theory calculations.
- Precise atomic theory needed to constrain the EOS from mirror radii.

Summary & Outlook

Open Challenges:

- Description of nuclear charge radii has been a long-standing challenge for ab-initio nuclear theory
- Light nuclear systems require precise experiments and atomic theory calculations.
- Precise atomic theory needed to constrain the EOS from mirror radii.
- Precise nuclear theory needed to constrain BSM physics from isotope shift measurements.

Small Size – Big Science

https://collaps.web.cern.ch/subpages/people.html

https://isolde-cris.web.cern.ch/collaboration.html

RISE/BECOLA @ FRIB https://groups.nscl.msu.edu/becola/people.html

Nuclear & Atomic & Molecular

- J. Dobaczewski (York) J. Holt (TRIUMF) R. Stroberg (U ND) W. Nazarewicz (FRIB/MSU)
- A. Borchevsky (Grøningen)
- B. Sahoo (PRL)
- R. Berger (Malbroune)
-

Complex Nuclei with Simple Structure

Nuclear Electromagnetic Properties from Laser Spectroscopy

Complex Nuclei with Simple Structure

✓High resolution (< MHz)</p>

- High efficiency (<100 ions/s) ?</p>
- High selectivity (>1/10⁶) ?
- Short time scales (< 1 s)?</p>

Main Challenges

Reinhard & Nazarewicz Phys. Rev. C 105, L021301 (2022)

Evolution of the nuclear size away from stability

Towards a "Standard Model" of the Nucleus

[Koning et al. PRL 132, 162502 (2024)]

