Proton polarizabilities and polarizability radii

Nikos Sparveris

NREC 2024 Workshop

May 2024

Supported by the US DOE / NP award DE-SC0016577

Outline

Introduction to the GPs

Status

Recent experiments / Jlab & MAMI

Spatial information & polarizability radii

Prospects

Proton Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of the nucleon to external EM field

Sensitive to the full excitation spectrum

Accessed experimentally through Compton Scattering

RCS: static polarizabilities \rightarrow net effect on the nucleon

Baryon Summary Table 150 **N** BARYONS (S = 0, I = 1/2) $p, N^+ = uud; n, N^0 = udd$ р $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.00727646681 \pm 0.0000000009 \,\mu$ Mass $m = 938.272046 \pm 0.000021$ MeV ^[a] $\left|m_{p} - m_{\overline{p}}\right|/m_{p} < 7 imes 10^{-10}$, CL = 90% ^[b] $\left|\frac{q_{\rho}^{T}}{m_{\pi}}\right|/(\frac{q_{\rho}}{m_{\pi}}) = 0.9999999991 \pm 0.0000000009$ $|q_p + q_{\overline{p}}|/e < 7 \times 10^{-10}, \, \text{CL} = 90\% \, [b]$ $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847356 \pm 0.000000023 \,\mu_N$ $(\mu_{D} + \mu_{\overline{D}}) / \mu_{D} = (0 \pm 5) \times 10^{-6}$ Electric dipole moment $d < 0.54 \times 10^{-23} e \text{ cm}$ Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm ^[d] Charge radius, ep CODATA value = 0.8775 \pm 0.0051 fm ^[d] Magnetic radius = 0.777 \pm 0.016 fm Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% [e] ($p \rightarrow$ invisible mode) Mean life $\tau > 10^{31}$ to 10^{33} years [e] (mode dependent)

Virtual Compton Scattering:

Virtuality of photon gives access to the GPs : $\alpha_E(Q^2) \& \beta_M(Q^2) + \text{spin GPs}$

- \rightarrow spatial distribution of the polarization densities
- \rightarrow electric & magnetic polarizability radii

Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

PDG

Proton Polarizablities

Accessed experimentally through Compton Scattering

RCS: static polarizabilities \rightarrow net effect on the nucleon

Virtual Compton Scattering:

Virtuality of photon gives access to the GPs : $\alpha_E(Q^2) \& \beta_M(Q^2) + \text{spin GPs}$

- \rightarrow spatial distribution of the polarization densities
- → electric & magnetic polarizability radii

Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

"stretchability"

$$\vec{d}_{E \text{ induced}} \sim \alpha \vec{E}$$

É

B

External field deforms the charge distribution

Paramagnetic: proton spin aligns with the external magnetic field

Diamagnetic: π -cloud induction produces field counter to the external perturbation

Virtual Compton Scattering

Virtual Compton Scattering

scalar GPs α_E and β_M

Virtual Compton Scattering

Early Experiments

MIT-Bates @ Q²=0.06 GeV²

MAMI-A1 @ Q²=0.33 GeV²

Jlab-Hall A @ Q²=0.9 & 1.8 GeV²

Early Experiments

Large uncertainties Higher precision measurements needed → Quantify balance between dia/para-magnetism

Recent Experiments

Recent Measurements: MAMI

MAMI A1/1-09 (vcsq2)

MAMI A1/3-12 (vcsdelta)

below threshold

above threshold

Both experiments utilized the A1 setup at MAMI

A1/1-09 @ MAMI

For LEX the higher order terms have to be kept small / under control

$$d^5\sigma = d^5\sigma^{BH+Born} + q'_{cm}\cdot\phi\cdot\Psi_0 + \mathcal{O}(q'^2_{cm})$$

Refined analysis procedure / phase space masking to keep these terms smaller than ~ 2%-3% level

Figure 3.13: (Left) behavior of $\mathcal{O}^{DR}(q'_{cm}^{2})$ in the $(cos(\theta_{cm}),\varphi_{cm})$ -plane at $q'_{cm} = 87.5 \ MeV/c$ and (right) two-dimensional representation of the angular region where $\mathcal{O}^{DR}(q'_{cm}^{2}) < 2\%$ (blue), the red squares correspond to the two areas of interest to perform the GP extraction.

Figure from PhD thesis of L. Correa, Mainz / Cl. Ferrand

New « vcsq2 » data:

- OOP kinematics (to access the blue region)
- -LEX Fit done with bin selection at $Q^2 = 0.1$ and 0.2 GeV².
- was found not necessary at Q² = 0.45 GeV².

In-plane

8.5 deg OOP

A1/1-09 @ MAMI

~ 1.0 GeV beam

 $Q^2 = 0.1 (GeV/c)^2$, 0.2 (GeV/c)², and 0.45 (GeV/c)²

Figure 5.8: Setting INP: measured $ep \rightarrow ep\gamma$ cross section at fixed $q'_{cm} = 112.5 \ MeV/c$ with respect to φ_{cm} for all the $\cos(\theta_{cm})$ -bins. The curves follow the convention of figure 5.6.

Figure from PhD thesis of L. Correa, Mainz / Cl. Ferrand

BH+B ----Polarizability ---effect

GP effect typically 5% - 15% of the cross section

Polarizability fits:

DR fit

DR calculation includes full dependency in q'_{cm}

LEX fit:

truncated in q'cm. Suppress contribution from higher order terms

MAMI Results

Revisiting the $Q^2=0.33$ GeV² data

Analysis revisited (unpublished):

Jlab: VCS-I Experiment (E12-15-001) in Hall C

High precision measurements targeting explicitly the kinematics of interest for a_E

Hall C: SHMS, HMS 4.56 GeV 20 µA Liquid hydrogen 10 cm cross sections & azimuthal asymmetries

$$A_{(\phi_{\gamma^*\gamma}=0,\pi)} = \frac{\sigma_{\phi_{\gamma^*\gamma}=0} - \sigma_{\phi_{\gamma^*\gamma}=180}}{\sigma_{\phi_{\gamma^*\gamma}=0} + \sigma_{\phi_{\gamma^*\gamma}=180}}$$

sensitivity to GPs

suppression of systematic asymmetries

VCS-I results: cross sections

Q²=0.27 GeV²

Q²=0.33 GeV²

VCS-I results: GPs

Nature 611, 265 (2022)

Electric GP (Q²)

Is there a non-trivial structure?

Electric GP

Is the observed a_E structure coincidental or not?

If true: Measure the shape precisely \rightarrow input to theory If not: We are able to show it with more measurements

> Strong tension between world data (?) Things we do not yet understand well? Underestimated uncertainties? ...

Magnetic GP: Large uncertainties & discrepancies Disentangle para/dia-magnetism in the proton

Ability to measure a_E and β_M with superb precision and with consistent systematics across Q^2

Magnetic GP

Theory: BXPT

The European Physical Journal C

Regular Article - Theoretical Physics

Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

Vadim Lensky^{1,2,3,a}, Vladimir Pascalutsa¹, Marc Vanderhaeghen¹

¹ Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany

² Institute for Theoretical and Experimental Physics, Moscow 117218, Russia

³ National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia

Analysis of the resonance contributions to the low-energy behavior of $a_E(Q^2) + \beta_M(Q^2)$ within holographic QCD

Nucleon electric and magnetic polarizabilities in Holographic QCD

Federico Castellani^{a,b}

^aINFN, Sezione di Firenze,

Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy.

^bDipartimento di Fisica e Astronomia, Universitá di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy.

E-mail: federico.castellani@unifi.it

ABSTRACT: Novel experimental results for the proton generalized electric polarizability, suggest an unexpected deviation from current theoretical predictions at low momentum transfer squared Q^2 . Motivated by this puzzle, we analyze the resonance contributions to the sum of the generalized electric and magnetic nucleon polarizabilities $\alpha_E(Q^2)$ and $\beta_M(Q^2)$, within the Holographic QCD model by Witten, Sakai, and Sugimoto (WSS). In particular, we account for the contributions from the first low-lying nucleon resonances with spin 1/2 and 3/2 and both parities. After having extrapolated the WSS model parameters to fit experimental data on baryonic observables, our findings suggest that the resonance contributions alone do not solve the above-mentioned puzzle. Moreover, at least for the proton case, where data are available, our results are in qualitative agreement with resonance contributions extracted from experimental nucleon-resonance helicity amplitudes.

 $(\alpha + \beta)(Q^2) [10^{-4} \text{fm}^3]$

arXiv:2402.07553v1 [hep-ph] 12 Feb 2024

Resonance contributions follow a smooth Q² dependence

Spatial information & polarizability radii

Spatial dependence of induced polarizations

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field

Phys. Rev. Lett. 104, 112001 (2010)

M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

Spatial dependence of induced polarizations

Nucleon form factor data \rightarrow light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field

x-y defines the transverse plane with the z-axis being the direction of the fast-moving proton

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2=0}$$

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2 = 0}$$

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2 = 0}$$

First extraction made possible with the MIT-Bates measurement (Q²=0.06 GeV²)

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2 = 0}$$

 $-4.67^{+5.36}_{-13.04}$

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2=0}$$

First extraction made possible with the MIT-Bates measurement ($Q^2=0.06 \text{ GeV}^2$)

 $\langle r_{\alpha}^2 \rangle = 2.16 \pm 0.31 \text{ fm}^2$

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2=0}$$

Since then: more data and more comprehensive treatment of the radius extraction

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2=0}$$

Since then: more data and more comprehensive treatment of the radius extraction

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \bigg|_{Q^2 = 0}$$

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2 = 0}$$

 $\langle r^2_{\beta_M}\rangle = 0.63\pm 0.31~{\rm fm}^2$

Static Polarizabilities

Recent measurements exhibit tension \rightarrow affects the pol. radius extraction

Static Polarizabilities

First Concurrent Extraction of the Leading-Order Scalar and Spin Proton Polarizabilities

E. Mornacchi[®],^{1,*} S. Rodini[®],² B. Pasquini[®],^{3,4} and P. Pedroni[®]⁴ ¹Institut für Kemphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz,Germany ²Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany ³Dipartimento di Fisica, Università degli Studi di Pavia, I-27100 Pavia, Italy ⁴INFN Sezione di Pavia, I-27100 Pavia, Italy

(Received 3 May 2022; revised 11 July 2022; accepted 2 August 2022; published 31 August 2022)

We performed the first simultaneous extraction of the six leading-order proton polarizabilities. We reached this milestone thanks to both new high-quality experimental data and an innovative bootstrapbased fitting method. These new results provide a self-consistent and fundamental benchmark for all future theoretical and experimental polarizability estimates.

$$\begin{aligned} \alpha_{E1} &= [12.7 \pm 0.8 (\text{fit}) \pm 0.1 (\text{model})] \times 10^{-4} \text{ fm}^3, \\ \beta_{M1} &= [2.4 \pm 0.6 (\text{fit}) \pm 0.1 (\text{model})] \times 10^{-4} \text{ fm}^3, \\ \gamma_{E1E1} &= [-3.0 \pm 0.6 (\text{fit}) \pm 0.4 (\text{model})] \times 10^{-4} \text{ fm}^4, \\ \gamma_{M1M1} &= [3.7 \pm 0.5 (\text{fit}) \pm 0.1 (\text{model})] \times 10^{-4} \text{ fm}^4, \\ \gamma_{E1M2} &= [-1.2 \pm 1.0 (\text{fit}) \pm 0.3 (\text{model})] \times 10^{-4} \text{ fm}^4, \\ \gamma_{M1E2} &= [2.0 \pm 0.7 (\text{fit}) \pm 0.4 (\text{model})] \times 10^{-4} \text{ fm}^4, \end{aligned}$$

Polarizability radii - Static Polarizabilities

Moving Forward

VCS-II (E12-23-001) @ JLab

VCS-II Projected Measurements

Can we measure with a different method?

Yes: positrons and/or beam spin asymmetries

Positrons allow for an independent path to access experimentally the GPs

Eur. Phys. J. A 57 (2021) 11, 316

Virtual Compton scattering at low energies with a positron beam

Barbara Pasquini^{a,1,2}, Marc Vanderhaeghen^{b,3}

¹Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy ²Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy

Institut für Kernphysik and PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität. D-55099 Mainz. Germany

(a): The beam-charge asymmetry as a function of the photon scattering angle at Q2 = 0.43 GeV 2.

(b) & (c): The electron and positron beam-spin asymmetry as a function of the photon scattering angle for out-of-plane kinematics.

Unpolarized beam charge asymmetry (BCA): $A_{UU}^{C} = \frac{(d\sigma_{+}^{+} + d\sigma_{-}^{+}) - (d\sigma_{-}^{+} + d\sigma_{-}^{-})}{d\sigma_{+}^{+} + d\sigma_{-}^{+} + d\sigma_{-}^{-} + d\sigma_{-}^{-}}$

Lepton beam spin asymmetry (BSA): $A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$

BCA (electrons & positrons)

BSA (electrons or positrons)

Summary

Progress in measuring fundamental properties of the proton

Insight to spatial deformation of the nucleon densities under an applied EM field, interplay of para/dia-magnetism in the proton, polarizability radii, ...

Experiment is ahead of theory:

Stringent constraints to theoretical predictions

High precision benchmark data for upcoming LQCD calculations

Future experiments:

Shape of the a_E structure (if it exists) pin down with precision - important input for the theory

Conduct independent cross-check Measure via a different channel (BS asymmetries & positrons)

Thank you!