

### SURVEY OF CONSTRAINTS ON THE PROTON FINITE SIZE — ZEMACH RADIUS FROM (MUONIC) HYDROGEN —

Franziska Hagelstein (JGU Mainz & PSI Villigen)

in collaboration with

V. Lensky, V. Pascalutsa (JGU) and V. Sharkovska (PSI, UZH)

NREC / PREN / µASTI 2024 @ Stony Brook







NREC / PREN / µASTI 2024 @ Stony Brook





Franziska Hagelstein

7th May 2024

NREC / PREN / µASTI 2024 @ Stony Brook

### Proton Charge Radius —



7<sup>th</sup> May 2024

4



Franziska Hagelstein



Franziska Hagelstein



# ELECTRIC SACHS FOR Sick HACTOR











#### Data still not consistent...



 Need to know radiative corrections to lepton-proton scattering talk by Signer





- Need to know radiative corrections to lepton-proton scattering talk by Signer
- Dispersive form factor analysis historically always gave small proton charge radius





- Need to know radiative corrections to lepton-proton scattering talk by Signer
- Dispersive form factor analysis historically always gave small proton charge radius
- Fits of scattering data suffer from model / extrapolation uncertainty





- Need to know radiative corrections to lepton-proton scattering talk by Signer
- Dispersive form factor analysis historically always gave small proton charge radius
- Fits of scattering data suffer from model / extrapolation uncertainty
- Strict lower bound on proton radius ?

## LOWER BOUND ON CHARGE RADIUS

$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2) \xrightarrow{Q^2=0} R_E^2 \text{ is a lower bound } R_E^2(Q^2) \le R_E^2 \text{ for } Q^2 \ge 0$$

FH and V. Pascalutsa, Phys. Lett. B 797 (2019)

- R<sub>E<sup>2</sup>(Q<sup>2</sup>) is monotonically increasing towards Q<sup>2</sup>=0</sub>
- Lower bound follows from finite Q<sup>2</sup> data, no extrapolation of FF data required

## LOWER BOUND ON CHARGE RADIUS



## LOWER BOUND ON CHARGE RADIUS



NREC / PREN / µASTI 2024 @ Stony Brook Franziska Hagelstein

#### **Comprehensive theory of the Lamb shift in light muonic atoms**

K. Pachucki,<sup>1</sup> V. Lensky,<sup>2</sup> F. Hagelstein,<sup>2,3</sup> S. S. Li Muli,<sup>2</sup> S. Bacca,<sup>2,4</sup> and R. Pohl<sup>5</sup> <sup>1</sup>Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland <sup>2</sup>Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany <sup>3</sup>Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland <sup>4</sup>Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany <sup>5</sup>Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

(Dated: May 19, 2023) Rev. Mod. Phys. 96 (2024) 1, 015001

| $egin{array}{l} E_{ m QED} \ {\cal C}  r_C^2 \ E_{ m NS} \end{array}$ | point nucleus<br>finite size<br>nuclear structure | $\begin{array}{c} 206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25) \end{array}$ | $\begin{array}{c} 228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200) \end{array}$ | $\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499(378) \end{array}$ | $\begin{array}{c} 1668.491(7) \\ -106.209  r_{\alpha}^2 \\ 9.276(433) \end{array}$ |
|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $E_L(\exp)$                                                           | $experiment^{a}$                                  | 202.3706(23)                                                             | 202.8785(34)                                                              | 1258.598(48)                                                               | 1378.521(48)                                                                       |
| $r_C r_C$                                                             | this work<br>previous <sup>a</sup>                | $egin{array}{l} 0.84060(39) \ 0.84087(39) \end{array}$                   | $2.12758(78)\ 2.12562(78)$                                                | $1.97007(94)\ 1.97007(94)$                                                 | $1.6786(12)\ 1.67824(83)$                                                          |

#### Comprehensive theory of the Lamb shift in light muonic atoms

K. Pachucki,<sup>1</sup> V. Lensky,<sup>2</sup> F. Hagelstein,<sup>2,3</sup> S. S. Li Muli,<sup>2</sup> S. Bacca,<sup>2,4</sup> and R. Pohl<sup>5</sup> <sup>1</sup>Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland <sup>2</sup>Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany <sup>3</sup>Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland <sup>4</sup>Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany <sup>5</sup>Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

(Dated: May 19, 2023) Rev. Mod. Phys. 96 (2024) 1, 015001

| $egin{array}{l} E_{ m QED} \ {\cal C}  r_C^2 \ E_{ m NS} \end{array}$ | point nucleus<br>finite size<br>nuclear structure | $\begin{array}{c} 206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25) \end{array}$ | $\begin{array}{c} 228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200) \end{array}$ | $\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499(378) \end{array}$ | $\begin{array}{c} 1668.491(7) \\ -106.209  r_{\alpha}^2 \\ 9.276(433) \end{array}$ |
|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $E_L(\exp)$                                                           | $experiment^{a}$                                  | 202.3706(23)                                                             | 202.8785(34)                                                              | 1258.598(48)                                                               | 1378.521(48)                                                                       |
| $r_C r_C$                                                             | this work<br>previous <sup>a</sup>                | $egin{array}{l} 0.84060(39) \ 0.84087(39) \end{array}$                   | $2.12758(78)\ 2.12562(78)$                                                | $1.97007(94)\ 1.97007(94)$                                                 | $1.6786(12)\ 1.67824(83)$                                                          |



present accuracy comparable with experimental precision

μD, μ³He+, μ4He+:

present accuracy factor 5-10 worse than experimental precision

#### Comprehensive theory of the Lamb shift in light muonic atoms

K. Pachucki,<sup>1</sup> V. Lensky,<sup>2</sup> F. Hagelstein,<sup>2,3</sup> S. S. Li Muli,<sup>2</sup> S. Bacca,<sup>2,4</sup> and R. Pohl<sup>5</sup> <sup>1</sup>Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland <sup>2</sup>Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany <sup>3</sup>Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland <sup>4</sup>Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany <sup>5</sup>Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

(Dated: May 19, 2023) Rev. Mod. Phys. 96 (2024) 1, 015001

| $egin{array}{l} E_{ m QED} \ {\cal C}  r_C^2 \ E_{ m NS} \end{array}$ | point nucleus<br>finite size<br>nuclear structure | $\begin{array}{c} 206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25) \end{array}$ | $\begin{array}{c} 228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200) \end{array}$ | $\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499(378) \end{array}$ | $\begin{array}{c} 1668.491(7) \\ -106.209  r_{\alpha}^2 \\ 9.276(433) \end{array}$ |
|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $E_L(\exp)$                                                           | $experiment^{a}$                                  | 202.3706(23)                                                             | 202.8785(34)                                                              | 1258.598(48)                                                               | 1378.521(48)                                                                       |
| $r_C r_C$                                                             | this work<br>previous <sup>a</sup>                | $egin{array}{l} 0.84060(39) \ 0.84087(39) \end{array}$                   | $2.12758(78)\ 2.12562(78)$                                                | $\begin{array}{c} 1.97007(94) \\ 1.97007(94) \end{array}$                  | $1.6786(12)\ 1.67824(83)$                                                          |



present accuracy comparable with experimental precision

μD, μ<sup>3</sup>He+, μ<sup>4</sup>He+:

present accuracy factor 5-10 worse than experimental precision

- Experiments will improve by up to a factor of 5
- Theoretical improvement needed for nuclear/nucleon 2- and 3-photon exchange

NREC / PREN / µASTI 2024 @ Stony Brook

Franziska Hagelstein 7

in 7<sup>th</sup> May 2024

 $\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \int \frac{d\mathbf{q}}{(2\pi)^3} \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$ 

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$
$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$

 $\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \int \frac{d\mathbf{q}}{(2\pi)^3} \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$ 

dispersion relation & optical theorem:  $T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$   $T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$ 

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2) / Q^2 = 4\pi \beta_{M1}$$

modelled Q<sup>2</sup> behavior:

 $\overline{T}_1(0,Q^2) = 4\pi\beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$ 

NREC / PREN / µASTI 2024 @ Stony Brook

 $\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \int \frac{d\mathbf{q}}{(2\pi)^3} \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$ 

dispersion relation & optical theorem:

$$T_{1}(\nu,Q^{2}) = \overline{T_{1}(0,Q^{2})} + \frac{32\pi Z^{2} \alpha M \nu^{2}}{Q^{4}} \int_{0}^{1} \mathrm{d}x \, \frac{x f_{1}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{\mathrm{el}})^{2} - i0^{+}}$$
$$T_{2}(\nu,Q^{2}) = \frac{16\pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{1} \mathrm{d}x \, \frac{f_{2}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{\mathrm{el}})^{2} - i0^{+}}$$

Caution: in the data-driven dispersive approach the T<sub>1</sub>(0,Q<sup>2</sup>) subtraction function is modelled!

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2) / Q^2 = 4\pi \beta_{M1}$$

modelled Q<sup>2</sup> behavior:

 $\overline{T}_1(0,Q^2) = 4\pi\beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$ 



NREC / PREN / µASTI 2024 @ Stony Brook

### POLARIZABILITY EFFECT IN $\mu$ H LAMB SHIFT

| Reference                           | $E_{2S}^{(\text{subt})}$ | $E_{2S}^{(\text{inel})}$ | $E_{2S}^{(\text{pol})}$ | $E_{2S}^{(\mathrm{el})}$ | $E_{2S}^{\langle 2\gamma \rangle}$ |  |  |
|-------------------------------------|--------------------------|--------------------------|-------------------------|--------------------------|------------------------------------|--|--|
| DATA-DRIVEN                         |                          |                          |                         |                          |                                    |  |  |
| (73) Pachucki '99                   | 1.9                      | -13.9                    | -12(2)                  | -23.2(1.0)               | -35.2(2.2)                         |  |  |
| (74) Martynenko '06                 | 2.3                      | -16.1                    | -13.8(2.9)              |                          |                                    |  |  |
| (75) Carlson et al. '11             | 5.3(1.9)                 | -12.7(5)                 | -7.4(2.0)               |                          |                                    |  |  |
| (76) Birse and McGovern '12 $$      | 4.2(1.0)                 | -12.7(5)                 | -8.5(1.1)               | -24.7(1.6)               | -33(2)                             |  |  |
| (77) Gorchtein et al.'13 $^{\rm a}$ | -2.3(4.6)                | -13.0(6)                 | -15.3(4.6)              | -24.5(1.2)               | -39.8(4.8)                         |  |  |
| (78) Hill and Paz '16               |                          |                          |                         |                          | -30(13)                            |  |  |
| (79) Tomalak'18                     | 2.3(1.3)                 |                          | -10.3(1.4)              | -18.6(1.6)               | -29.0(2.1)                         |  |  |
| Leading-order $B\chi PT$            |                          |                          |                         |                          |                                    |  |  |
| (80) Alarcòn et al. '14             |                          |                          | $-9.6^{+1.4}_{-2.9}$    |                          |                                    |  |  |
| (81) Lensky et al. '17 $^{\rm b}$   | $3.5_{-1.9}^{+0.5}$      | -12.1(1.8)               | $-8.6^{+1.3}_{-5.2}$    |                          |                                    |  |  |
| LATTICE QCD                         |                          |                          |                         |                          |                                    |  |  |
| (82) Fu et al. '22                  |                          |                          |                         |                          | -37.4(4.9)                         |  |  |

#### Table 1 Forward 2 $\gamma$ -exchange contributions to the 2S-shift in $\mu$ H, in units of $\mu$ eV

<sup>a</sup>Adjusted values due to a different decomposition into the elastic and polarizability contributions.

<sup>b</sup>Partially includes the  $\Delta(1232)$ -isobar contribution.

## POLARIZABILITY EFFECT IN $\mu$ H LAMB SHIFT

 $\propto \alpha_{E1}$ 

|                                                                                                     |                                                        |            | •                         |                          |                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|---------------------------|--------------------------|------------------------------------|--|--|--|--|
| Table 1 Forward $2\gamma$ -exchange contributions to the 2S-shift in $\mu$ H, in units of $\mu$ eV. |                                                        |            |                           |                          |                                    |  |  |  |  |
| Reference                                                                                           | $E_{2S}^{(\text{subt})} \qquad E_{2S}^{(\text{inel})}$ |            | $E_{2S}^{(\mathrm{pol})}$ | $E_{2S}^{(\mathrm{el})}$ | $E_{2S}^{\langle 2\gamma \rangle}$ |  |  |  |  |
| DATA-DRIVEN                                                                                         |                                                        |            |                           |                          |                                    |  |  |  |  |
| (73) Pachucki '99                                                                                   | 1.9                                                    | -13.9      | -12(2)                    | -23.2(1.0)               | -35.2(2.2)                         |  |  |  |  |
| (74) Martynenko '06                                                                                 | 2.3                                                    | -16.1      | -13.8(2.9)                | <u>}</u>                 |                                    |  |  |  |  |
| (75) Carlson et al. '11                                                                             | 5.3(1.9)                                               | -12.7(5)   | -7.4(2.0)                 | $\langle$                |                                    |  |  |  |  |
| (76) Birse and McGovern '12                                                                         | 4.2(1.0)                                               | -12.7(5)   | -8.5(1.1)                 | -24.                     | -33(2)                             |  |  |  |  |
| (77) Gorchtein et al.'13 $^{\rm a}$                                                                 | -2.3(4.6)                                              | -13.0(6)   | -15.3(4.6)                | -24.5(1.2)               | -39.8(4.8)                         |  |  |  |  |
| (78) Hill and Paz '16                                                                               |                                                        |            |                           |                          | -30(13)                            |  |  |  |  |
| (79) Tomalak'18                                                                                     | 2.3(1.3)                                               |            | -10.3(1.4)                | -18.6(1.6)               | -29.0(2.1)                         |  |  |  |  |
| Leading-order $B\chi PT$                                                                            |                                                        |            |                           |                          |                                    |  |  |  |  |
| (80) Alarcòn et al. '14                                                                             |                                                        |            | $-9.6^{+1.4}_{-2.9}$      |                          |                                    |  |  |  |  |
| (81) Lensky et al. '17 $^{\rm b}$                                                                   | $3.5^{+0.5}_{-1.9}$                                    | -12.1(1.8) | $-8.6^{+1.3}_{-5.2}$      |                          |                                    |  |  |  |  |
| LATTICE QCD                                                                                         |                                                        |            |                           |                          |                                    |  |  |  |  |
| (82) Fu et al. '22                                                                                  |                                                        |            |                           |                          | -37.4(4.9)                         |  |  |  |  |

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small !



<sup>a</sup>Adjusted values due to a different decomposition into the elastic and polarizability contributions.

<sup>b</sup>Partially includes the  $\Delta(1232)$ -isobar contribution.

## POLARIZABILITY EFFECT IN $\mu$ H LAMB SHIFT



Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small !



| Table 1 | Forward    | $2\gamma$ -exchange | contributions | to | the  | 2S-shift  | in | $\mu \mathbf{H}.$ | in  | units | of   | ueV | 7. |
|---------|------------|---------------------|---------------|----|------|-----------|----|-------------------|-----|-------|------|-----|----|
|         | I OI Walla | a y-chemange        | contributions | UU | UIIC | 20-5IIII0 |    | pull,             | 111 | unius | UI I | μυ  | •  |

| Reference                           | $E_{2S}^{(\mathrm{subt})}$ | $E_{2S}^{(\mathrm{inel})}$ | $E_{2S}^{(\mathrm{pol})}$ | $E_{2S}^{(\mathrm{el})}$ | $E_{2S}^{\langle 2\gamma \rangle}$ |
|-------------------------------------|----------------------------|----------------------------|---------------------------|--------------------------|------------------------------------|
| DATA-DRIVEN                         |                            |                            |                           |                          |                                    |
| (73) Pachucki '99                   | 1.9                        | -13.9                      | -12(2)                    | -23.2(1.0)               | -35.2(2.2)                         |
| (74) Martynenko '06                 | 2.3                        | -16.1                      | -13.8(2.9)                | )                        | <u> </u>                           |
| (75) Carlson <i>et al.</i> '11      | 5.3(1.9)                   | -12.7(5)                   | -7.4(2.0)                 | $\langle$                |                                    |
| (76) Birse and McGovern '12 $$      | 4.2(1.0)                   | -12.7(5)                   | -8.5(1.1) .               | -24.                     | -33(2)                             |
| (77) Gorchtein et al.'13 $^{\rm a}$ | -2.3(4.6)                  | -13.0(6)                   | -15.3(4.6)                | -24.5(1.2)               | -39.8(4.8)                         |
| (78) Hill and Paz '16               |                            |                            |                           |                          | -30(13)                            |
| (79) Tomalak'18                     | 2.3(1.3)                   |                            | -10.3(1.4)                | -18.6(1.6)               | -29.0(2.1)                         |
| Leading-order $B\chi PT$            |                            |                            |                           |                          |                                    |
| (80) Alarcòn et al. '14             |                            |                            | $-9.6^{+1.4}_{-2.9}$      |                          |                                    |
| (81) Lensky et al. '17 $^{\rm b}$   | $3.5_{-1.9}^{+0.5}$        | -12.1(1.8)                 | $-8.6^{+1.3}_{-5.2}$      |                          |                                    |
| LATTICE QCD                         |                            |                            |                           |                          |                                    |
| (82) Fu et al. '22                  |                            |                            |                           |                          | -37.4(4.9)                         |

<sup>a</sup>Adjusted values due to a different decomposition into the elastic and polarizability contributions.

<sup>b</sup>Partially includes the  $\Delta(1232)$ -isobar contribution.

## EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for  $\overline{T}_1(\nu, Q^2)$  with subtraction at  $\nu_s = iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \,\overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

### EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for  $\overline{T}_1(\nu, Q^2)$  with subtraction at  $\nu_s = iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \,\overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

Inelastic contribution for  $\nu_s = iQ$  is order of magnitude smaller than for  $\nu_s = 0$ 



FH, V. Pascalutsa, Nucl. Phys. A 1016 (2021) 122323

based on Bosted-Christy parametrization:

$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = 0\right) \simeq -12.3 \,\mu\text{eV}$$
$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = iQ\right) \simeq 1.6 \,\mu\text{eV}$$

NREC / PREN / µASTI 2024 @ Stony Brook

### EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for  $\overline{T}_1(\nu, Q^2)$  with subtraction at  $\nu_s = iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \,\overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

- Inelastic contribution for  $\nu_s = iQ$  is order of magnitude smaller than for  $\nu_s = 0$
- Prospects for future lattice QCD LQCD talk by Fu and EFT calculations



FH, V. Pascalutsa, Nucl. Phys. A 1016 (2021) 122323

based on Bosted-Christy parametrization:

$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = 0\right) \simeq -12.3 \,\mu\text{eV}$$
$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = iQ\right) \simeq 1.6 \,\mu\text{eV}$$

NREC / PREN / µASTI 2024 @ Stony Brook

Franziska Hagelstein

7th May 2024

#### Proton Zemach Radius —

## HYPERFINE SPLITTING IN $\mu$ H



 $\bigcirc$ 

Measurements of the  $\mu H$  ground-state HFS planned by the CREMA and FAMU Collaborations

## HYPERFINE SPLITTING IN $\mu$ H

$$\Delta E_{\rm HFS}(nS) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}\right] E_F(nS)$$

with  $\Delta_{\text{structure}} = \Delta_Z + \Delta_{\text{recoil}} + \Delta_{\text{pol}}$ 



Measurements of the μH ground-state HFS planned by the CREMA and FAMU Collaborations

Very precise input for the 2γ effect needed to find the μH ground-state HFS transition in experiment

## HYPERFINE SPLITTING IN $\mu$ H

$$\Delta E_{\text{HFS}}(nS) = [1 + \Delta_{\text{QED}} + \Delta_{\text{weak}} + \Delta_{\text{structure}}] E_F(nS)$$
with  $\Delta_{\text{structure}} = \Delta_Z + \Delta_{\text{recoil}} + \Delta_{\text{pol}}$ 

$$\downarrow$$

$$\frac{2P_{M2}}{2P_{M2}} + \frac{P_{R2}}{2P_{M2}}$$

$$\downarrow$$

$$\frac{2P_{M2}}{2P_{M2}} + \frac{P_{R2}}{2P_{M2}}$$

$$\downarrow$$

$$V_{\text{triplet}}$$

$$Lamb$$
shift
$$\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[ \frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] = -2Z\alpha m_r R_Z$$
experimental value:  $R_Z = 1.082(37) \text{ fm}$ 
A. Antognini, et al., Science 339 (2013) 417-420

- Measurements of the µH ground-state HFS planned by the CREMA and FAMU Collaborations
- Very precise input for the 2γ effect needed to find the μH ground-state HFS transition in experiment
- Zemach radius can help to pin down the magnetic properties of the proton
# $2\gamma$ EFFECT IN THE $\mu$ H HFS

| Reference                         | $\Delta_{\rm Z}$ | $\Delta_{ m recoil}$ | $\Delta_{ m pol}$ | $\Delta_1$ | $\Delta_2$ | $E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$ |
|-----------------------------------|------------------|----------------------|-------------------|------------|------------|-------------------------------------------------|
|                                   | [ppm]            | [ppm]                | [ppm]             | [ppm]      | [ppm]      | [meV]                                           |
| DATA-DRIVEN                       |                  |                      |                   |            |            |                                                 |
| Pachucki '96 (1)                  | -8025            | 1666                 | 0(658)            |            |            | -1.160                                          |
| Faustov et al. '01 $(9)^{a}$      | -7180            |                      | 410(80)           | 468        | -58        |                                                 |
| Faustov et al. '06 $(10)^{\rm b}$ |                  |                      | 470(104)          | 518        | -48        |                                                 |
| Carlson et al. '11 $(11)^{c}$     | -7703            | 931                  | 351(114)          | 370(112)   | -19(19)    | -1.171(39)                                      |
| Tomalak '18 $(12)^{\rm d}$        | -7333(48)        | 846(6)               | 364(89)           | 429(84)    | -65(20)    | -1.117(19)                                      |
| Heavy-baryon $\chi PT$            |                  |                      |                   |            |            |                                                 |
| Peset et al. '17 $(13)$           |                  |                      |                   |            |            | -1.161(20)                                      |
| Leading-order $\chi PT$           |                  |                      |                   |            |            |                                                 |
| Hagelstein et al. '16 $(14)$      |                  |                      | 37(95)            | 29(90)     | 9(29)      |                                                 |
| $+\Delta(1232)$ EXCIT.            |                  |                      |                   |            |            |                                                 |
| Hagelstein et al. '18 $(15)$      |                  |                      | -13               | 84         | -97        |                                                 |

#### Table 1 Forward $2\gamma$ -exchange contribution to the HFS in $\mu$ H.

<sup>a</sup>Adjusted values:  $\Delta_{pol}$  and  $\Delta_1$  corrected by -46 ppm as described in Ref. 16.

<sup>b</sup>Different convention was used to calculate the Pauli form factor contribution to  $\Delta_1$ , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

<sup>c</sup>Elastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution,  $(1+\delta_{\rm Z}^{\rm rad})\Delta_{\rm Z}$  with  $\delta_{\rm Z}^{\rm rad} \sim 0.0153$  (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

<sup>d</sup>Uses  $r_p$  from  $\mu$ H (20) as input.

# $2\gamma$ EFFECT IN THE $\mu H$ HFS

| Reference                               | $\Delta_{\rm Z}$ | $\Delta_{\rm recoil}$ | $\Delta_{\mathrm{pol}}$ | $\Delta_1$ | $\Delta_2$ | $E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$ |
|-----------------------------------------|------------------|-----------------------|-------------------------|------------|------------|-------------------------------------------------|
|                                         | [ppm]            | [ppm]                 | [ppm]                   | [ppm]      | [ppm]      | [meV]                                           |
| DATA-DRIVEN                             |                  |                       |                         |            |            |                                                 |
| Pachucki '96 (1)                        | -8025            | 1666                  | 0(658)                  |            |            | -1.160                                          |
| Faustov et al. '01 $(9)^{a}$            | -7180            |                       | 410(80)                 | 468        | -58        |                                                 |
| Faustov et al. '06 $(10)^{\rm b}$       |                  |                       | 470(104)                | 518        | -48        | $\overline{\langle}$                            |
| Carlson et al. '11 $(11)^{c}$           | -7703            | 931                   | 351(114)                | 370(112)   | -19(1)     | .171(39)                                        |
| Tomalak '18 $(12)^{\rm d}$              | -7333(48)        | 846(6)                | 364(89)                 | 429(84)    | -65(20)    | -1.117(19)                                      |
| Heavy-baryon $\chi PT$                  |                  |                       |                         |            |            |                                                 |
| Peset et al. '17 $(13)$                 |                  |                       |                         |            |            | -1.161(20)                                      |
| leading-order $\chi \mathrm{PT}$        |                  |                       |                         |            |            |                                                 |
| Hagelstein et al. '16 $(14)$            |                  |                       | 37(95)                  | 29(90)     | 9(29)      |                                                 |
| $+\Delta(1232)$ EXCIT.                  |                  |                       |                         |            |            |                                                 |
| Hagelstein et al. '18 $\left(15\right)$ |                  |                       | -13                     | 84         | -97        |                                                 |

#### Table 1 Forward $2\gamma$ -exchange contribution to the HFS in $\mu$ H.

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small !



<sup>a</sup>Adjusted values:  $\Delta_{pol}$  and  $\Delta_1$  corrected by -46 ppm as described in Ref. 16.

<sup>b</sup>Different convention was used to calculate the Pauli form factor contribution to  $\Delta_1$ , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

<sup>c</sup>Elastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution,  $(1+\delta_Z^{rad})\Delta_Z$  with  $\delta_Z^{rad} \sim 0.0153$  (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

<sup>d</sup>Uses  $r_p$  from  $\mu$ H (20) as input.

7<sup>th</sup> May 2024

# $2\gamma$ EFFECT IN THE $\mu H$ HFS

| Table 1 Forward $2\gamma$ -exchange contribution to the HFS in $\mu$ H. |                  |                       |                         |            |            |                                                 |
|-------------------------------------------------------------------------|------------------|-----------------------|-------------------------|------------|------------|-------------------------------------------------|
| Reference                                                               | $\Delta_{\rm Z}$ | $\Delta_{\rm recoil}$ | $\Delta_{\mathrm{pol}}$ | $\Delta_1$ | $\Delta_2$ | $E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$ |
|                                                                         | [ppm]            | [ppm]                 | [ppm]                   | [ppm]      | [ppm]      | [meV]                                           |
| DATA-DRIVEN                                                             |                  |                       |                         |            |            |                                                 |
| Pachucki '96 (1)                                                        | -8025            | 1666                  | 0(658)                  |            |            | -1.160                                          |
| Faustov et al. '01 $(9)^{a}$                                            | -7180            |                       | 410(80)                 | 468        | -58        |                                                 |
| Faustov et al. '06 $(10)^{\rm b}$                                       |                  |                       | 470(104)                | 518        | -48        |                                                 |
| Carlson et al. '11 $(11)^{c}$                                           | -7703            | 931                   | 351(114)                | 370(112)   | -19(1      | .171(39)                                        |
| Tomalak '18 $(12)^{\rm d}$                                              | -7333(48)        | 846(6)                | 364(89)                 | 429(84)    | -65(20)    | -1.117(19)                                      |
| Heavy-baryon $\chi PT$                                                  |                  |                       |                         |            |            |                                                 |
| Peset et al. '17 $(13)$                                                 |                  |                       |                         |            |            | -1.161(20)                                      |
| leading-order $\chi PT$                                                 |                  |                       |                         |            |            |                                                 |
| Hagelstein et al. '16 $(14)$                                            |                  |                       | 37(95)                  | 29(90)     | 9(29)      |                                                 |
| $+\Delta(1232)$ EXCIT.                                                  |                  |                       |                         |            |            |                                                 |
| Hagelstein et al. '18 $(15)$                                            |                  |                       | -13                     | 84         | -97        |                                                 |

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small !



<sup>a</sup>Adjusted values:  $\Delta_{pol}$  and  $\Delta_1$  corrected by -46 ppm as described in Ref. 16.

<sup>b</sup>Different convention was used to calculate the Pauli form factor contribution to  $\Delta_1$ , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

<sup>c</sup>Elastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution,  $(1+\delta_Z^{rad})\Delta_Z$  with  $\delta_Z^{rad} \sim 0.0153$  (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

<sup>d</sup>Uses  $r_p$  from  $\mu$ H (20) as input.

### POLARIZABILITY EFFECT IN HFS

Polarizability effect on the HFS is completely constrained by empirical information

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{\alpha m}{2\pi (1+\kappa)M} \left( \delta_1 + \delta_2 \right) \\ \delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left\{ \frac{5 + 4v_l}{(v_l+1)^2} \Big[ 4I_1(Q^2) + F_2^2(Q^2) \Big] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x, Q^2) \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left( 4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \right\} \\ \delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x, Q^2) \left( \frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \quad \text{with } v_l = \sqrt{1 + \frac{1}{\tau_l}}, v_x = \sqrt{1 + x^2 \tau^{-1}}, \tau_l = \frac{Q^2}{4m^2} \text{ and } \tau = \frac{Q^2}{4M^2} \end{split}$$

## POLARIZABILITY EFFECT IN HFS

Polarizability effect on the HFS is completely constrained by empirical information

$$\Delta_{\text{pol.}} = \Delta_{1} + \Delta_{2} = \frac{am}{2\pi(1+\kappa)M} (\delta_{1} + \delta_{2})$$

$$\delta_{1} = 2 \int_{0}^{\infty} \frac{dQ}{Q} \left\{ \frac{5 + 4v_{l}}{(v_{l}+1)^{2}} \left[ 4I_{1}(Q^{2}) + F_{2}^{2}(Q^{2}) \right] - \frac{32M^{4}}{Q^{4}} \int_{0}^{x_{0}} dx \, x^{2}g_{1}(x, Q^{2}) \frac{1}{(v_{l}+v_{x})(1+v_{x})(1+v_{l})} \left( 4 + \frac{1}{1+v_{x}} + \frac{1}{v_{l}+1} \right) \right\}$$

$$\delta_{2} = 96M^{2} \int_{0}^{\infty} \frac{dQ}{Q^{3}} \int_{0}^{x_{0}} dx \, g_{2}(x, Q^{2}) \left( \frac{1}{v_{l}+v_{x}} - \frac{1}{v_{l}+1} \right) \quad \text{with } v_{l} = \sqrt{1 + \frac{1}{\tau_{l}}}, v_{x} = \sqrt{1 + x^{2}\tau^{-1}}, \tau_{l} = \frac{Q^{2}}{4m^{2}} \text{ and } \tau = \frac{Q^{2}}{4M^{2}}$$

$$Date-Driven Analyses Tak by Carlson PRELIN INARY = PRELIN I$$

0.5

1.5

 $\Delta_{pol}$  [eH] (ppm)

1.0

2.0

0.0

-0.5

3.0 -100

2.5

100

200

 $\Delta_{pol}$  [ $\mu$ H] (ppm)

0

300

400

500

600

## POLARIZABILITY EFFECT FROM BCHPT

- Low-Q region is very important!
- LO BChPT result is compatible with zero
  - Contributions from  $\sigma_{LT}$  and  $\sigma_{TT}$  are sizeable and largely cancel each other



# PROTON ZEMACH RADIUS

BChPT polarizability prediction implies smaller Zemach radius (smaller, just like  $r_p$ )



### **CORRELATION OF PROTON RADII**



### **CORRELATION OF PROTON RADII**



Franziska Hagelstein

7th May 2024

#### Proton Magnetic Radius —

#### MAGNETIC RADIUS FROM INELASTIC SCATTERING

Burkhardt-Cottingham sum rule relates <u>elastic form factors</u> to the zeroth moment of an <u>inelastic spin structure function</u>:

$$I_2(Q^2) = \frac{2M^2}{Q^2} \int_0^{x_0} \mathrm{d}x \, g_2(x, Q^2) = \frac{1}{4} F_2(Q^2) G_M(Q^2)$$

Constrain the magnetic radius through inelastic scattering:



NREC / PREN / µASTI 2024 @ Stony Brook

#### LOWER BOUND ON PROTON MAGNETIC RADIUS



#### LOWER BOUND ON PROTON MAGNETIC RADIUS



NREC / PREN / µASTI 2024 @ Stony Brook

Franziska Hagelstein 7<sup>th</sup>

#### Proton Friar Radius —

#### **CORRELATION OF CHARGE AND FRIAR RADII**



#### **CORRELATION OF CHARGE AND FRIAR RADII**



#### Elastic TPE splits into Friar radius + recoil part

| Reference                            | $E_{2S}^{(\text{subt})}$          | $E_{2S}^{(inel)}$ | $E_{2S}^{(\text{pol})}$ | $E_{2S}^{(el)}$ | $E_{2S}^{\langle 2\gamma \rangle}$ |  |  |  |
|--------------------------------------|-----------------------------------|-------------------|-------------------------|-----------------|------------------------------------|--|--|--|
| Data-driven dispersive eva           | Data-driven dispersive evaluation |                   |                         |                 |                                    |  |  |  |
| Pachucki 1999 (75)                   | 1.9                               | -13.9             | -12(2)                  | -23.2(1.0)      | -35.2(2.2)                         |  |  |  |
| Martynenko 2006 (76)                 | 2.3                               | -16.1             | -13.8(2.9)              |                 |                                    |  |  |  |
| Carlson et al. 2011 (77)             | 5.3(1.9)                          | -12.7(5)          | -7.4(2.0)               |                 |                                    |  |  |  |
| Birse & McGovern 2012                | 4.2(1.0)                          | -12.7(5)          | -8.5(1.1)               | -24.7(1.6)      | -33(2)                             |  |  |  |
| (78)                                 |                                   |                   |                         |                 |                                    |  |  |  |
| Gorchtein et al. 2013                | -2.3(4.6)                         | -13.0(6)          | -15.3(4.6)              | -24.5(1.2)      | -39.8(4.8)                         |  |  |  |
| (79) <sup>a</sup>                    |                                   |                   |                         |                 |                                    |  |  |  |
| Hill & Paz 2017 (80)                 |                                   |                   |                         |                 | -30(13)                            |  |  |  |
| Tomalak 2019 (81)                    | 2.3(1.3)                          |                   | -10.3(1.4)              | -18.6(1.6)      | -29.0(2.1)                         |  |  |  |
| Leading-order baryon chi             | ral perturbation the              | ory               |                         |                 |                                    |  |  |  |
| Alarcón et al. 2014 (82)             |                                   |                   | $-9.6^{+1.4}_{-2.9}$    |                 |                                    |  |  |  |
| Lensky et al. 2018 (83) <sup>b</sup> | $3.5^{+0.5}_{-1.9}$               | -12.1(1.8)        | $-8.6^{+1.3}_{-5.2}$    |                 |                                    |  |  |  |
| Lattice QCD                          | Lattice QCD                       |                   |                         |                 |                                    |  |  |  |
| Fu et al. 2022 (84)                  |                                   |                   |                         |                 | -37.4(4.9)                         |  |  |  |
|                                      |                                   |                   |                         |                 |                                    |  |  |  |

#### Table 1 Forward 2y-exchange contributions to the 2S shift in muonic hydrogen (µeV)

NREC / PREN / µASTI 2024 @ Stony Brook

#### Elastic TPE splits into Friar radius + recoil part

| Table 1 | Forward 2v-eychan  | ge contributions to | the 2.S shift in | muonic hydrogen (  | ueV) |
|---------|--------------------|---------------------|------------------|--------------------|------|
| Table 1 | roi waru 27-cachan | ge contributions to | ule 20 sinit in  | i muome nyurogen ( |      |

| compare to  | future exp. |
|-------------|-------------|
| uncertainty | ~ 0.4 µeV   |

| Reference                            | $E_{2S}^{(\text{subt})} = E_{2S}^{(\text{inel})} = E_{2S}^{(\text{pol})}$ |            | $E_{2S}^{(\text{pol})}$ | $E_{2S}^{(el)}$ | $E_{2S}^{(2\gamma)}$ |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------|------------|-------------------------|-----------------|----------------------|--|--|--|
| Data-driven dispersive eva           |                                                                           |            |                         |                 |                      |  |  |  |
| Pachucki 1999 (75)                   | 1.9                                                                       | -13.9      | -12(2)                  | -23.2(1.0)      | -35.2(2.2)           |  |  |  |
| Martynenko 2006 (76)                 | 2.3                                                                       | -16.1      | -13.8(2.9)              |                 |                      |  |  |  |
| Carlson et al. 2011 (77)             | 5.3(1.9)                                                                  | -12.7(5)   | -7.4(2.0)               |                 |                      |  |  |  |
| Birse & McGovern 2012                | 4.2(1.0)                                                                  | -12.7(5)   | -8.5(1.1)               | -24.7(1.6)      | -33(2)               |  |  |  |
| (78)                                 |                                                                           |            |                         |                 |                      |  |  |  |
| Gorchtein et al. 2013                | -2.3(4.6)                                                                 | -13.0(6)   | -15.3(4.6)              | -24.5(1.2)      | -39.8(4.8)           |  |  |  |
| (79) <sup>a</sup>                    |                                                                           |            |                         |                 |                      |  |  |  |
| Hill & Paz 2017 (80)                 |                                                                           |            |                         |                 | -30(13)              |  |  |  |
| Tomalak 2019 (81)                    | 2.3(1.3)                                                                  |            | -10.3(1.4)              | -18.6(1.6)      | -29.0(2.1)           |  |  |  |
| Leading-order baryon chi             | ral perturbation the                                                      | ory        |                         |                 |                      |  |  |  |
| Alarcón et al. 2014 (82)             |                                                                           |            | $-9.6^{+1.4}_{-2.9}$    |                 |                      |  |  |  |
| Lensky et al. 2018 (83) <sup>b</sup> | $3.5^{+0.5}_{-1.9}$                                                       | -12.1(1.8) | $-8.6^{+1.3}_{-5.2}$    |                 |                      |  |  |  |
| Lattice QCD                          | Lattice QCD                                                               |            |                         |                 |                      |  |  |  |
| Fu et al. 2022 (84)                  |                                                                           |            |                         |                 | -37.4(4.9)           |  |  |  |

NREC / PREN / µASTI 2024 @ Stony Brook

- Elastic TPE splits into Friar radius + recoil part
  - Recoil is small for  $\mu$ H ~ 0.03(5)  $\mu$ eV [Karshenboim et al., PRD 91 (2015) 073003]

| P.1.1. 1 | Forward 2 and a second it stime to the 2.C shift in surroute hadrones (v. IV) |
|----------|-------------------------------------------------------------------------------|
| ladie I  | Forward 29-exchange contributions to the 25 shift in muonic hydrogen (Lev)    |
|          |                                                                               |

compare to future exp. uncertainty ~ 0.4 µeV

| Reference                            | $E_{2S}^{(\text{subt})} = E_{2S}^{(\text{inel})} = E_{2S}^{(\text{pol})}$ |            | $E_{2S}^{(\text{pol})}$ | $E_{2S}^{(cl)}$ | $E_{2S}^{(2\gamma)}$ |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------|------------|-------------------------|-----------------|----------------------|--|--|--|
| Data-driven dispersive eva           | aluation                                                                  |            |                         |                 |                      |  |  |  |
| Pachucki 1999 (75)                   | 1.9                                                                       | -13.9      | -12(2)                  | -23.2(1.0)      | -35.2(2.2)           |  |  |  |
| Martynenko 2006 (76)                 | 2.3                                                                       | -16.1      | -13.8(2.9)              |                 |                      |  |  |  |
| Carlson et al. 2011 (77)             | 5.3(1.9)                                                                  | -12.7(5)   | -7.4(2.0)               |                 |                      |  |  |  |
| Birse & McGovern 2012                | 4.2(1.0)                                                                  | -12.7(5)   | -8.5(1.1)               | -24.7(1.6)      | -33(2)               |  |  |  |
| (78)                                 |                                                                           |            |                         |                 |                      |  |  |  |
| Gorchtein et al. 2013                | -2.3(4.6)                                                                 | -13.0(6)   | -15.3(4.6)              | -24.5(1.2)      | -39.8(4.8)           |  |  |  |
| (79) <sup>a</sup>                    |                                                                           |            |                         |                 |                      |  |  |  |
| Hill & Paz 2017 (80)                 |                                                                           |            |                         |                 | -30(13)              |  |  |  |
| Tomalak 2019 (81)                    | 2.3(1.3)                                                                  |            | -10.3(1.4)              | -18.6(1.6)      | -29.0(2.1)           |  |  |  |
| Leading-order baryon chi             | ral perturbation the                                                      | ory        |                         |                 |                      |  |  |  |
| Alarcón et al. 2014 (82)             |                                                                           |            | $-9.6^{+1.4}_{-2.9}$    |                 |                      |  |  |  |
| Lensky et al. 2018 (83) <sup>b</sup> | $3.5^{+0.5}_{-1.9}$                                                       | -12.1(1.8) | $-8.6^{+1.3}_{-5.2}$    |                 |                      |  |  |  |
| Lattice QCD                          | Lattice QCD                                                               |            |                         |                 |                      |  |  |  |
| Fu et al. 2022 (84)                  |                                                                           |            |                         |                 | -37.4(4.9)           |  |  |  |

- Elastic TPE splits into Friar radius + recoil part
  - Recoil is small for μH ~ 0.03(5) μeV [Karshenboim et al., PRD 91 (2015) 073003]

•  $E_{2S}^{el} = -21.1(2) \ \mu eV$  based on  $R_F^3 = 2.310(26) \ fm^3$  [Lin et al. (2022), PRL]

Table 1 Forward 2*y*-exchange contributions to the 2*S* shift in muonic hydrogen (µeV)

compare to future exp. uncertainty ~ 0.4 μeV

| Reference                            | $E_{2S}^{(subt)}$    | $E_{2S}^{(inel)}$ | $E_{2S}^{(pol)}$     | $E_{2S}^{(el)}$ | $E_{2S}^{\langle 2\gamma \rangle}$ |  |  |
|--------------------------------------|----------------------|-------------------|----------------------|-----------------|------------------------------------|--|--|
| Data-driven dispersive eva           | aluation             |                   |                      |                 |                                    |  |  |
| Pachucki 1999 (75)                   | 1.9                  | -13.9             | -12(2)               | -23.2(1.0)      | -35.2(2.2)                         |  |  |
| Martynenko 2006 (76)                 | 2.3                  | -16.1             | -13.8(2.9)           |                 |                                    |  |  |
| Carlson et al. 2011 (77)             | 5.3(1.9)             | -12.7(5)          | -7.4(2.0)            |                 |                                    |  |  |
| Birse & McGovern 2012                | 4.2(1.0)             | -12.7(5)          | -8.5(1.1)            | -24.7(1.6)      | -33(2)                             |  |  |
| (78)                                 |                      |                   |                      |                 |                                    |  |  |
| Gorchtein et al. 2013                | -2.3(4.6)            | -13.0(6)          | -15.3(4.6)           | -24.5(1.2)      | -39.8(4.8)                         |  |  |
| (79) <sup>a</sup>                    |                      |                   |                      |                 |                                    |  |  |
| Hill & Paz 2017 (80)                 |                      |                   |                      |                 | -30(13)                            |  |  |
| Tomalak 2019 (81)                    | 2.3(1.3)             |                   | -10.3(1.4)           | -18.6(1.6)      | -29.0(2.1)                         |  |  |
| Leading-order baryon chi             | ral perturbation the | ory               |                      |                 |                                    |  |  |
| Alarcón et al. 2014 (82)             |                      |                   | $-9.6^{+1.4}_{-2.9}$ |                 |                                    |  |  |
| Lensky et al. 2018 (83) <sup>b</sup> | $3.5^{+0.5}_{-1.9}$  | -12.1(1.8)        | $-8.6^{+1.3}_{-5.2}$ |                 |                                    |  |  |
| Lattice QCD                          | Lattice QCD          |                   |                      |                 |                                    |  |  |
| Fu et al. 2022 (84)                  |                      |                   |                      |                 | -37.4(4.9)                         |  |  |

- Elastic TPE splits into Friar radius + recoil part
  - Recoil is small for  $\mu H \sim 0.03(5) \mu eV$  [Karshenboim et al., PRD 91 (2015) 073003]
  - $E_{2S}^{el} = -21.1(2) \ \mu eV$  based on  $R_F^3 = 2.310(26) \ fm^3$  [Lin et al. (2022), PRL]
- Aim: self-consistent extraction of from spectroscopy [Karshenboim, PRD 90 (2014) 053012]

| $E_{2S}^{(\text{subt})}$          | $E_{2S}^{(inel)}$                                                                                                                       | $E_{2S}^{(pol)}$                                                                                                                                                                                                                                            | $E_{2S}^{(el)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_{2S}^{(2\gamma)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data-driven dispersive evaluation |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1.9                               | -13.9                                                                                                                                   | -12(2)                                                                                                                                                                                                                                                      | -23.2(1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -35.2(2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 2.3                               | -16.1                                                                                                                                   | -13.8(2.9)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 5.3(1.9)                          | -12.7(5)                                                                                                                                | -7.4(2.0)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 4.2(1.0)                          | -12.7(5)                                                                                                                                | -8.5(1.1)                                                                                                                                                                                                                                                   | -24.7(1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -33(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -2.3(4.6)                         | -13.0(6)                                                                                                                                | -15.3(4.6)                                                                                                                                                                                                                                                  | -24.5(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -39.8(4.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -30(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 2.3(1.3)                          |                                                                                                                                         | -10.3(1.4)                                                                                                                                                                                                                                                  | -18.6(1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -29.0(2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ← used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ral perturbation the              | ory                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Karshenhoim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                   |                                                                                                                                         | $-9.6^{+1.4}_{-2.9}$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 201 <i>1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $3.5^{+0.5}_{-1.9}$               | -12.1(1.8)                                                                                                                              | $-8.6^{+1.3}_{-5.2}$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| ·                                 |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   |                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -37.4(4.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   | $E_{2S}^{(subt)}$ luation<br>1.9<br>2.3<br>5.3(1.9)<br>4.2(1.0)<br>-2.3(4.6)<br>2.3(1.3)<br>ral perturbation the<br>$3.5^{+0.5}_{-1.9}$ | $E_{2S}^{(subt)}$ $E_{2S}^{(incl)}$ luation       1.9       -13.9         2.3       -16.1         5.3(1.9)       -12.7(5)         4.2(1.0)       -12.7(5)         -2.3(4.6)       -13.0(6)         2.3(1.3)       -12.1(1.8) $3.5_{-1.9}^{+0.5}$ -12.1(1.8) | $E_{2S}^{(subt)}$ $E_{2S}^{(inel)}$ $E_{2S}^{(pol)}$ luation         1.9         -13.9         -12(2)           2.3         -16.1         -13.8(2.9)           5.3(1.9)         -12.7(5)         -7.4(2.0)           4.2(1.0)         -12.7(5)         -8.5(1.1)           -2.3(4.6)         -13.0(6)         -15.3(4.6)           2.3(1.3)         -10.3(1.4)           ral perturbation theory         -9.6_{-2.9}^{+1.4}           3.5_{-1.9}^{+0.5}         -12.1(1.8)         -8.6_{-5.2}^{+1.3} | $E_{2S}^{(subt)}$ $E_{2S}^{(inel)}$ $E_{2S}^{(pol)}$ $E_{2S}^{(el)}$ luation         1.9         -13.9         -12(2)         -23.2(1.0)           2.3         -16.1         -13.8(2.9)         -12.7(5)         -7.4(2.0)           4.2(1.0)         -12.7(5)         -7.4(2.0)         -24.7(1.6)           -2.3(4.6)         -13.0(6)         -15.3(4.6)         -24.5(1.2)           2.3(1.3)         -10.3(1.4)         -18.6(1.6)           ral perturbation theory         -9.6_{-2.9}^{+1.4}         -18.6(1.6) | E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E <the< th=""> <the< th=""> <the< th=""> <the< th=""></the<></the<></the<></the<> |  |  |

Table 1 Forward 2y-exchange contributions to the 2S shift in muonic hydrogen (µeV)

compare to future exp. uncertainty ~ 0.4 μeV

# DEUTERON CHARGE FORM FACTOR

V. Lensky, A. Hiller Blin, V. Pascalutsa, Phys. Rev. C 104 (2021) 054003



- Agreement of chiral and pionless EFT at N3LO
- Pionless EFT evaluation contains only one unknown low-energy constant  $l_1$  of a longitudinal photon coupling to two nucleons
- Use  $r_d$  and  $r_{Fd}$  correlation to test low-Q properties of form factor parametrisations
- Abbott parametrisation gives different radii

#### Thank you for your attention!

#### LOWER BOUND

#### Lower bound on the proton charge radius from electron scattering data



Franziska Hagelstein<sup>a</sup>, Vladimir Pascalutsa<sup>b,\*</sup>

<sup>a</sup> Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

<sup>b</sup> Institut für Kernphysik and Cluster of Excellence PRISMA, Johannes Gutenberg Universität Mainz, D-55128 Mainz, Germany

#### A R T I C L E I N F O

Article history: Received 1 January 2019 Received in revised form 18 July 2019 Accepted 30 July 2019 Available online 1 August 2019 Editor: V. Metag

*Keywords:* Charge radius Proton size Form factors Charge distribution Electron scattering

#### $A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

The proton charge-radius determinations from the electromagnetic form-factor measurements in electron-proton (*ep*) scattering require an extrapolation to zero momentum transfer ( $Q^2 = 0$ ) which is prone to model-dependent assumptions. We show that the data at finite momentum transfer can be used to establish a rigorous lower bound on the proton charge radius, while bypassing the model-dependent assumptions that go into the fitting and extrapolation of the *ep* data. The near-future precise *ep* experiments at very low  $Q^2$ , such as PRad, are expected to set a stringent lower bound on the proton radius.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP<sup>3</sup>.

**Disclaimer:** "For illustrative purposes, we have made a tentative determination of the lower bound on the proton charge radius from the available data in the region of  $Q^2$  below 0.02 GeV<sup>2</sup>... our uncertainty estimate is only indicative and should be taken with caution. The treatment of systematic errors, most notably the normalization uncertainty, is rather involved in this particular experiment and entangled with the radius extraction."

#### **RMS CHARGE RADIUS**

• RMS charge radius:  $R_E^2 = -6 \frac{d G_E(Q^2)}{dQ^2} \Big|_{Q^2=0} = 4\pi \int_0^\infty dr \, r^4 \, \rho_E(r)$ 

•  $G_E(Q^2) = 4\pi \int_0^\infty dr \, r^2 j_0(Qr) \, \rho_E(r)$  with the spherically symmetric charge density  $\rho_E(r)$  and the spherical Bessel function  $j_0(x) = \frac{\sin x}{x}$ 

- $G_E(Q^2)$  and  $\rho_E(r)$  are Lorentz-invariant quantities
- Taylor expansion,  $G_E(Q^2) = 1 Q^2 \langle r^2 \rangle_E / 6 + Q^4 \langle r^4 \rangle_E / 120 + \dots$ , convergence radius is limited by the onset of the pion-production branch cut at  $Q^2 \ll 4m_\pi^2 \sim 0.08 \,\text{GeV}^2$ 
  - Dispersive fits and z-expansion take singularities into account

# EVALUATION OF THE LOWER BOUND

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

- Each data point gives a lower bound statistical average is used for a more accurate value
- Data below  $Q^2 < 0.02 \, \text{GeV}^2$  away from pion-production branch cut
- Lower cut at  $Q_0^2 \sim 0.01 \, {
  m GeV^2}$

Assume a small normalization error  $\epsilon$ , such that  $G_E^{(\exp)} = (1 + \epsilon) G_E$ 

- Lower-bound function observed in experiment:  $R_E^{2(\exp)}(Q^2) = R_E^2(Q^2) \frac{6}{O^2}\ln(1+\epsilon)$
- Lower bound is preserved,  $R_E^{2(\exp)}(Q^2) \leq R_E^2(Q^2),$  if  $\epsilon > 0$
- Lower bound is violated,  $R_E^{2(\exp)}(Q^2) \not\leq R_E^2(Q^2)$  for  $Q^2 < Q_0^2$ , if  $\epsilon < 0$

Estimate lower cut with  $\epsilon = -0.001$  and  $Q_0^2 = \sqrt{\frac{-6\ln(1+\epsilon)}{\langle r^4 \rangle_E/20 - R_E^4/12}}$ 

## NORMALIZATION UNCERTAINTY

- Normalization of FF data is in general more complicated:
  - MAMI data have 31 (fitted) normalization parameters
  - Different fit of normalization parameters can generate a shift of the data
- Assume a highly-correlated systematic normalization uncertainty:
  - Averaging a dataset  $A_i \pm \sigma_i \pm \Delta$  with correlated systematic error  $\Delta$ , is equivalent to averaging the dataset  $A_i \pm \sigma'_i$  with  $\sigma'_i = \sigma_i \left(1 + \Delta^2 \sum_j 1/\sigma_j^2\right)^{1/2}$
  - $\Delta=0.001$  leads to  $\sigma_i'\sim 4.5\,\sigma_i$
- Alternatively one can study subsets where the normalization is an overall factor
- Proper error evaluation should use the covariance matrix established in the experimental analysis

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

■  $R_E^2(Q^2) \ge 0$ , since  $G_E(Q^2) \le 1$ 

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

- $R_E^2(Q^2) \ge 0$ , since  $G_E(Q^2) \le 1$
- Show that  $G_E(Q^2) \leq 1$  for  $Q^2 \geq 0$ :

• 
$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$$

•  $F_2(Q^2) \ge 0$  (empirically known, e.g.,  $F_2(0) = \kappa$ )

•  $F_1(Q^2) \leq 1$  follows from positive definiteness of the transverse charge density  $\rho_{\perp}(b) \geq 0$  — since  $F_1(0) - F_1(Q^2) = 2\pi \int_0^\infty db \ b \left[1 - J_0(Qb)\right] \rho_{\perp}(b) > 0$  with the cylindrical Bessel function  $J_0(x) \leq 1$ 

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

- $R_E^2(Q^2) \ge 0$ , since  $G_E(Q^2) \le 1$
- $R_E^2(Q^2)$  falls with increasing  $Q^2$ , if  $G_E$  falls not faster than by a power law

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

- $R_E^2(Q^2) \ge 0$ , since  $G_E(Q^2) \le 1$
- $R_E^2(Q^2)$  falls with increasing  $Q^2$ , if  $G_E$  falls not faster than by a power law
- $R_E^2(Q^2)$  is monotonic in the space-like region

• Unsubtracted dispersion relation: 
$$R_E^2(Q^2) = \frac{1}{\pi} \int_{4m_p i^2}^{\infty} dt \frac{\operatorname{Im} R_E^2(t)}{t + Q^2}$$
, with  $\operatorname{Im} R_E^2(t) = \frac{6 \varphi_E(t)}{t}$  and  $\varphi(t) \ge 0$  is the phase defined through  $G_E(t) = |G_E(t)| e^{i\varphi(t)}$ 

Lower-bound function: 
$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2)$$

- $R_E^2(Q^2) \ge 0$ , since  $G_E(Q^2) \le 1$
- $R_E^2(Q^2)$  falls with increasing  $Q^2$ , if  $G_E$  falls not faster than by a power law
- $R_E^2(Q^2)$  is monotonic in the space-like region

• Unsubtracted dispersion relation: 
$$R_E^2(Q^2) = \frac{1}{\pi} \int_{4m_p i^2}^{\infty} dt \frac{\operatorname{Im} R_E^2(t)}{t + Q^2}$$
, with  $\operatorname{Im} R_E^2(t) = \frac{6 \varphi_E(t)}{t}$  and  $\varphi(t) \ge 0$  is the phase defined through  $G_E(t) = |G_E(t)| e^{i\varphi(t)}$ 

• Limit equals the proton radius:  $\lim_{Q^2 \to 0} R_E^2(Q^2) = -6 \frac{G'_E(Q^2)}{G_E(Q^2)} \Big|_{Q^2=0} = R_E^2$ 

# HYPERFINE SPLITTING

**Theory:** QED, ChPT, data-driven **Experiment:** HFS in  $\mu$ H,  $\mu$ He<sup>+</sup>, ... dispersion relations, ab-initio few-nucleon theories **Testing the theory**  discriminate between theory **Determine** predictions for polarizability Interpreting the exp. fundamental effect Guiding the exp. constants extract  $E^{\text{TPE}}$ ,  $E^{\text{pol.}}$  or  $R_{z}$ disentangle  $R_Z$  & • find narrow 1S HFS polarizability effect by Zemach radius  $R_Z$ transitions combining HFS in H &  $\mu$ H with the help of full ► test HFS theory theory predictions: • combining HFS in H &  $\mu$ H Input for data-QED, weak, finite with theory prediction for driven evaluations size, polarizability polarizability effect form factors, test nuclear theories structure functions, polarizabilities Spectroscopy of ordinary atoms (H, He<sup>+</sup>) Electron and **Compton Scattering** 



# HYPERFINE SPLITTING

#### The hyperfine splitting of $\mu$ H (theory update):

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022)



NREC / PREN / µASTI 2024 @ Stony Brook


NREC / PREN / µASTI 2024 @ Stony Brook



NREC / PREN / µASTI 2024 @ Stony Brook

## POLARIZABILITY EFFECT FROM BCHPT

- LO BChPT result is compatible with zero
  - Contributions from  $\sigma_{LT}$  and  $\sigma_{TT}$  are sizeable and largely cancel each other



- Are the data-driven evaluations/uncertainties affected by cancelations?
- Scaling with lepton mass of the lepton-proton bound state



## DATA-DRIVEN EVALUATION

Empirical information on spin structure functions from JLab Spin Physics Programme



■ Low-Q region is very important → cancelation between  $I_1(Q^2)$  and  $F_2(Q^2)$ 



NREC / PREN / µASTI 2024 @ Stony Brook

7th May 2024