
New Constraints on Proton 
Size from Spin Structure Data

Carl E. Carlson (a.k.a., NREC 0055)
William & Mary

NREC 2024, with PREN 2023 & ASTI
Mainz, 26-30 June 2023

Based on current work with  D. Ruth, K. Slifer, J.-P. Chen, F. Hagelstein, 
V. Pascalutsa, A. Deur, S. Kuhn, M. Ripani, X. Zheng, R. Zielinski, & C. Gu.

Also ancient papers with Nazaryan & Griffioen, PRL 2006, CJP 2007, LNP 2008, 
PRA 2008, 2011

μ



Motivation
• General: find the proton structure effects on the 

hyperfine splitting (HFS) in hydrogen, both 𝜇H and eH. 

• More specific: 

• Take advantage of excellent new input data 

• Get more accurate prediction of splitting to help in 
setting up new experiments 

• Get a new measure of the average separation 
between magnetic and electric material in the proton, 
the Zemach radius.  (Titular motivation) 

• Talk will be mostly about how the calculation is done. 
Will show new results, both for HFS and Zemach radius.
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New input data

• For our calculation, input data includes the spin-
dependent proton structure functions , 
measured in polarized inelastic  scattering 

• Functions of W (total CM  energy) and  (photon off-
shell mass). 

• Previously, no  data at all.  Now g2p JLab experiment 
84 data points, at 4 different          (Ruth et al., 2022) 

• And wonderfully extended set of  data from JLab EG4. 
1085 data points, at 25 values of ,  
range                 (Zheng et al., 2021)

g1 and g2
ep

ep Q2

g2
Q2

g1
Q2

≈ [0.01, 1.0] GeV2
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For information, the old data
• No old data at all for .   

Wilczek-Wandzura relation could give part of  
and there were data fits (!)  

• JLab EG1b  data, available in 2005 
1124 data points at 27 values of   
range    
(publication Fersch et al., 2017) 

• SLAC E155  data, 24 data points,  
(Anthony et al., 2000) 

• Actual data for  and good lower   data creates 
opportunity for much improved calculational result

g2
g2

g1
Q2

≈ [0.05, 5.0] GeV2

g1 Q2 > 1.2 GeV2

g2 Q2 g1
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New planned experiments
• CREMA, FAMU, & JPARC propose measurement of HFS in 

ground state H 

• 1S H  splitting is about 182.636 meV 
or wavelength ≈ 6.8 𝜇m (infrared) 
or frequency ≈ 44.2 THz 

• Worry about time to run experiment: 
Have laser, frequency width ≈ 100 MHz 

• Say spread of prediction is about 0.16 meV (can do better!) 
➔  spread of frequency prediction is ≈ 40 GHz 
➔  need ≈ 400 frequency settings of laser to scan HFS 
region.

μ

μ
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Planned experiments run time
• From talks: need 1.4 hour to get 4σ signal above background, 

and 1 hour to change laser frequency. 

• 2.4 hours × 400 = 960 hours ≈ 8 weeks    (@ 5 days/week) 
Ugh: other groups want the PSI (CREMA’s location) also 

• ∴ want good theoretical help to reduce the laser scan width 

• Anticipate fractional experimental uncertainty upon 
completion better than 100 MHz/44.2 THz ≈ 2 ppm 

• Current best  HFS splitting measurement is from CREMA 
(Science, 2013) and is 22.8089 (51) meV for the 2S state,  
or ≈ 220 ppm. 

• For comparison,  
     or 1.4 ppt

μH

E1S,HFS(eH) = h × 1420.405 751 768 (2) MHz
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Coming soon: Zemach radius

• Is average separation of magnetic  
and electric material in proton 

 

• Nonrelativistically same as 

 

• Can obtain from form factors, or by “reverse 
engineering” from coming work on HFS

rZ = ∫ d3r1 d3r2 ρE( ⃗r1) | ⃗r1 − ⃗r2 |ρM( ⃗r2)

rZ = −
4
π ∫

∞

0

dQ
Q2 [ GE(Q2)GM(Q2)

1 + κp
− 1]
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Side note

• NR, form factors are Fourier transforms of charge or 
magnetic densities. 

• Relativistically, form factors defined from matrix 
element of electromagnetic current, 

 

(with  ) 

• Provably same in NR limit, but not in general.  
Coming results define  from form factor expression.

⟨p′￼, s′￼|Jμ |p, s⟩ = ū(p′￼, s′￼)[γμF1 + iσμνqν F2

2mp
]u(p, s)

GM = F1 + F2 ; GE = F1 − (Q2/4m2
p)F2

rZ
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The calculation: lowest order
• H-atom, S-state, spin-dependent splitting  

UG textbook calculation!

9

• Get           

•                    Bohr magneton 
     exact magnetic moment for proton 

• “Fermi energy” ;    Can evaluate to about 10-figure accuracy 

•
Alternate writings, 

Ep
F =

8π
3

μBμp

a3
B

=
8π
3

(mrα)3μBμp

μB = e/(2mℓ)
μp = (1 + κp ) e/(2mp)

Ep
F =

8α4

3
m2

ℓ (1 + κp)
mp (1 + mℓ /mp)3

=
16α2

3
μp

μB

R∞

(1 + mℓ /mp)3



Next need corrections
• Write as 

  

•    well calculated 

• “some smaller corrections”  won’t be discussed here 

•  = structure dependent corrections,  
        here meaning corrections from 2-  exchange,  
   
 

• Conventionally separate as 
            

Ep
HFS = Ep

F (1 + ΔQED + ΔS + some smaller corrections)
ΔQED

ΔS
γ

ΔS = ΔZ + ΔR + Δpol
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“Zemach”

Rel. elastic 
Corrections

Polarizability 
corrections
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To be discussed

• How do we get the 2  corrections from ep 
scattering data? (General answer: dispersion 
relations) 

• Believe unsubtracted dispersion relation o.k. 
Can be discussed if needed. 

• Effect of new data.

γ
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2  corrections      .γ
• Not calculable ab initio.   

But lower part is forward Compton scattering of off-shell photons, 
algebraically gotten from 
     

• Spin dependence is in the antisymmetric part 
 

• Imaginary part of above is related to polarized inelastic 
scattering, with 
  

• Emphasize:  and  are measured at SLAC, HERMES, JLab,… 

Tμν(q, p, S) =
i

2πmp ∫ d4ξ eiq⋅ξ ⟨pS T jμ(ξ)jν(0) pS⟩

TA
μν =

i
mp

ϵμναβqα [H1(ν, Q2) Sβ + H2(ν, Q2)
p ⋅ q Sβ − S ⋅ q pβ

p ⋅ q ]
ep

Im H1(ν, Q2) =
1
ν

g1(ν, Q2) and Im H2(ν, Q2) =
mp

ν2
g2(ν, Q2)

g1 g2
12
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Some use 
S1,2 = 4π2αH1,2



2  corrections            .γ

• Combine electron part of diagram with Compton bottom,  
and energy from 2  exchange 

  

    

• (Wick rotated).  Great, but don’t know  from data. 

• But do know Im parts, and if no subtraction, simple Cauchy 
(dispersion relation) gives 
               

and similarly for . 

γ
Δpol =

E2γ

EF inel

=
2αme

(1 + κp)π3mp

× ∫
d4Q

(Q4 + 4m2
e Q2

0)Q2 {(2Q2 + Q2
0)H inel

1 (iQ0, Q2) − 3Q2Q2
0 H inel

2 (iQ0, Q2)}

H1,2

H inel
1 (ν, Q2) =

1
π ∫

∞

ν2
th

dν′￼
2 Im H1(ν′￼, Q2)

ν′￼
2 − ν2

H2
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Do some integrals analytically, getting

•
 

•
 

•
 

•         

•  are known kinematic weighting functions.

Δpol =
αmℓ

2(1 + κp)πmp
(Δ1 + Δ2)

Δ1 = ∫
∞

0

dQ2

Q2 {β1( Q2

4m2
ℓ

)F2
2(Q2) + 4mp ∫

∞

νth

dν
ν2

β̃1 (Q2, ν, mℓ) g1(ν, Q2)}
Δ2 = − 12mp ∫

∞

0

dQ2

Q2 ∫
∞

νth

dν
ν2

β̃2 (Q2, ν, mℓ) g2(ν, Q2)

β1(τ) = − 3τ + 2τ2 + 2(2 − τ) τ(τ + 1)

β̃1 and β̃2
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Comments
• Early history: begun by Iddings (1965),  

  finalized by Drell and Sullivan (1967), 
    put in present notation by de Rafael (1971).   
      No spin-dependent data existed,  
        no nonzero evaluation for > 30 years,  
          until Faustov and Martynenko (2002),  
            then modern era starts 

• Someone added something: the  term.  Not inelastic. 
(Put in here, taken out somewhere else.)  
Thought convenient in 1967, still here in 2024.. 

•  term as written finite in  limit, because of known sum 
rule,                                            (DHGHY)

F2
2

Δ1 me → 0
4mp ∫

∞

νth

dν
ν2

g1(ν,0) = − κ2
p
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Effect of new data, g1

• One set of plots

16

○

○ ○
○

○

○

○

○

○

○

○ ○ ○ ○

○

○

○
○

○

○

○

○ EG1,Q2 = 0.0496 GeV2

1.1 1.2 1.3 1.4 1.5

-0.6

-0.4

-0.2

0.0

0.2

W (GeV)

g 1

• 2005 data



Effect of new data, g1

• One set of plots
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• 2022 data

EG4,Q2 = 0.0494 GeV2
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Effect of new data, g1

• One set of plots
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• together 

• Effect on error limits: 
new:  
old:  

Δ1(eH, data only) = 4.72 ± 1.02
Δ1(eH, data only) = x . xx ± 2.69
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Completion of  calculationΔ1

• More comments on  before going to  

•  noticeable contributions from outside the data 
region.  Need  model or fit to extrapolate.  Have 
fit of Simula et al (PRD, 2002) and 
fit of Hall B collaboration (unpub., ca. 2016) and 
fit of E155 (PLB, 2000, high , high  only). 

• Hall B fits best where we have comparison data 

Δ1 g2

∃

Q2 W
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Some fit comparisons

• Generally good agreement among the three fits in scaling region (high 
, high ). 

• Hall B closer in data region. (They did have EG1b data.) 

• We use the Hall B fit for the fill-in contributions (higher  for in data 
region, and  above and below data region).

Q2 W

W Q2

Q2
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 results todayΔ1

•  =  4.71 ± 1.02   from data 
            +   1.60 ± …      high  fill-in, data region 
            +   0.12 ± …      low  
             +    0.34  ± …       high  
 
      =   6.78 ± 1.02data ± 0.23fill-in 
          

• Old  = 8.85 ± 2.78 

• About -1 unit from newer data and  
about -1 from updated fill-in choice. 

Δ1(eH)
W

Q2

Q2

Δ1(eH)
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Modern , short versionΔ2

• Thanks to g2p JLab experiment, have data where 
there was none before 

•  =   1.20data ± 0.16data + fill-in  
              =   1.98     ± 0.16data ± 0.38fill-in 

• Old  =  0.57 ± 0.57 

• Big difference from having data. 

• Wilczek-Wandzura close to old value, not to data.

Δ2(eH) −
−

Δ2(eH) −
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 resultsΔpol

• Reminders:           

• New results:  
                      

Δpol =
αmℓ

2(1 + κp)πmp
(Δ1 + Δ2)

Ep
HFS = Ep

F (1 + ΔQED + ΔZ + ΔR + Δpol + some smaller corrections)

Δpol(eH) = 1.09 ± 0.31 ppm
Δpol(μH) = 200.6 ± 52.4 ppm
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More results

• Want also  and  

•  is big (magnitude about 7000 ppm for  case), and 
varies with choice of form factors. 

• If focusing on muon case, one way to do better is to use 
electron experimental data and calculation of  (a smaller 
term, about 900 ppm) to obtain the Zemach radius.   

• Then use Zemach radius so determined to find HFS for 

ΔZ ΔR

ΔZ μ

ΔR

μH
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Zemach radius
• Reminder:   

                       

• “Reverse engineering”:     

rZ = −
4
π ∫

∞

0

dQ
Q2 [ GE(Q2)GM(Q2)

1 + κp
− 1]

ΔZ = − 2α mrℓ rZ

rZ = 1.036(8) fm

25

• More comparisons,   
 

for   AMT,  AS,  Kelly,  FW,  dipole
rZ = {1.080, 1.091, 1.069, 1.049, 1.025}



Muon results

• Use this  and work out other corrections to find 
overall HFS for . 

• Specifically need recoil term, which is a 
relativistic correction, dependent on .  
Surprisingly steady at about 931 ppm. 

•         

rZ
μH

GE, GM, & F2

E th.
1S-HFS(μH) = 182.636 (16) meV
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Note

• Further improveable method of Tomalak and of 
Peset and Pineda (2018).  They realized that the 
experimental  is known to 12 figures and 
the bulk of the  calculation just scales with the 

 mass ratio, known to 10 figures.  Just 
need to calculate the smaller pieces that don’t 
scale this way,  leading to a final result with 
smaller overall uncertainty.  Will see again ready 
soon.  Relatively modern number obtained this 
way already available in Antognini et al (2022).  
Error bar (8).

Ep
HFS(eH)
μH

mrμ/mre
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Summary
• Dispersive calculation, assuming no subtractions are 

needed, is complete, well defined, and unambiguous.   

• Gets value of HFS using spin-dependent  scattering data 
as input. 

• New data reduces uncertainty limits in calculated HFS by 
more than factor 2.  

• Result already useful for pinning down starting point of laser 
settings in new  HFS measurements. 

• Also have an improved (Zemach) radius determination. 

• Can still do somewhat better. 

• EFT calculations not much mentioned in this talk, but there is 
a “tension” that requires resolution.

ep

μH
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Beyond the end
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More fit comparisons

• Scaling region;  near threshold .W
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Unsubtracted dispersion relation (DR)?

• Was once openly discussed (< 2006, say), now 
seems generally thought o.k. 

• DR comes from Cauchy integral formula applied 
with some contour (closed integration path) 
 
 

 

• ( DR in  with  fixed )

H1(ν, Q2) =
1

2πi ∮
H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2

ν (or ν2) Q2

31

Re ν2

Im ν2

ν2



Dispersion relation             .

• Work into 

 

• Drop the  term.  O.k. if  falls at high . 

• Can view as standard or as dramatic assumption.

H1(ν, Q2) =
𝖱𝖾𝗌 H1(ν, Q2)

el

ν2
el − ν2

+
1
π ∫cut

𝖨𝗆 H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2 +
1

2πi ∫|ν′￼|=∞

H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2

|ν | = ∞ H1 ν

32

Re ν2

Im ν2
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H1
• The elastic term can be worked out, sticking on-shell 

form factors at the  vertices, 

        

• The second term does not fall with  at fixed . 

• Unsubtracted DR fails for  alone.  Overall success 
requires exact cancelation between elastic and 
inelastic contributions. 

• ( In case of interest:    . ) 

γp
Hel

1 =
2mp

π ( Q2F1(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2
−

F2
2(Q2)
4m2

p )
ν Q2

Hel
1

Hel
2 = −

2mp

π
mpνF2(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2
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But then,
• Free quarks if there is at least one large momentum 

scale.  So at high , Compton amplitude for proton 
should be sum of Compton amplitudes for free 
quarks, which have zero  . 

• Regge theory suggests  must fall with .  See 
Abarbanel and Nussinov (1967), who show 

 with * 

• Very similar DR derivation gives GDH sum rule, which 
is checked experimentally and works, within current 
experimental uncertainty. 

• GDH sum rule also checked in LO and NLO order 
perturbation theory in QED.  Appears to work.

ν

F2

H1 ν

H1 ∼ να−1 α < 1.

34
*Footnote 16 of this paper reads:  For an indication of the lengthy details involved one may see M. Gell-Mann, M. L. Goldberger, and F. .E Low, Rev. Mod. Phys. 36, 640 (1964).



Resolution?

• In modern times, authors who use experimental 
scattering data and DR to calculate the 2  
corrections assume an unsubtracted DR works 
for all of  .  

• Reevaluation always possible. 

• Proceed to next topic, comparison of data driven 
evaluations of HFS to evaluations using B PT to 
obtain  . 

• See if subtraction comments come into play.

γ

H1

χ
H1,2
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Side note: how good need we be?

• New measurements of HFS in  in 1S state are planned. 

• May measure to 0.1 ppm (as fraction of Fermi energy).  
But need theory prediction to help determine starting 
point of laser frequency scan. 

• From 2018 conference at MITP (Mainz), want theory 
prediction to 25 ppm or better.   Better is what we should 
look for. 

• Believe state of art for HFS in 1S  is from Antognini, 
Hagelstein, Pascalutsa (2022), 
                               
or 44 ppm.  

μH

μH

E1S
HFS = 182.634(8) meV
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Application of B PTχ
• Using chiral perturbation theory, one can 

calculate beyond the elastic case diagrams like

37

• Or diagrams where there is a -baryon on the 
hadronic leg,

Δ

∆

• These can be used to calculate  , at low  and 
CM energy  not too far from threshold.  Also can 
get    or    and from them obtain 

 at similarly low kinematics.

H1,2 Q2

W
γ*N → πN γ*N → Δ

g1,2



 comparisong1
• Compare  from B PT (blue lines) to actual JLab datag1 χ

38

• Plots are “unofficial”:  Made by me* and involve 
spreading  pole out using Lorentzian of same 
total area. 

• O.k.  This won’t explain difference in  results.

Δ

Δpol

*With greatest thanks to Pascalutsa and Hagelstein 
for providing code for their gamma N -> pi N
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Non-pole terms

• Non-pole means  independent terms in  . 

• Recall elastic  . 

• The B PT results for  with -  and  
intermediate states also have non-pole terms. 

• To calculate energies for the non-pole terms, 
cannot use the DR (at least not un-subtracted 
ones), but can use the expressions on slide 7, 
which were before any Cauchy trickery was used 

ν H1,2

Hel
1 =

2mp

π ( Q2F1(Q2)GM(Q2)
(Q2 − iϵ)2 − 4m2

pν2
−

F2
2(Q2)
4m2

p )
χ H1 π N Δ
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Pole and non-pole
• One part: The  contribution to  HFS for 2S state*  

               
                       
                       

• Lot of cancellation. 

• But from asymptotic freedom, or from Regge 
analysis, or from success of DHG sum rule, expect 
zero non-pole term.  Totality, from elastic and 
resonances and inelastic terms, needs to add to 
zero for the  independent terms.   

• Something to talk about.

Δ μH
EHFS

pol = − 40.69 μeV pole
= 39.54 μeV non-pole
= − 1.15 μeV total

ν

40*from Hagelstein (2016)



One point

• How should one deal with non-zero non-pole 
terms that result from partial information, when 
one knows that the non-pole terms are zero when 
one has complete information?
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 with newest Δpol g1,2
• Defer to David Ruth (next after next talk). 

• Except for comment on handling regions outside 
the data range. 

• Mostly, because of the kinematic factors, the 
need is for data at low  and low  (or  near 
threshold), and this is where the data is. 

• Again, mostly, where there is no data and we use 
models or interpolations, the contributions to 
are not great and the accruing uncertainty is not 
great.

Q2 ν W

Δ1,2
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 with newest Δpol g1,2
• An exception may be the very low  region, where there 

is no data.  For the 2003 data, this was .   

• And there may be a problem when comparing to PT. 

• What we did:  reminder    
                    

 

with               . 

• For very low  we used 

      

got by fitting to data 

Q2

Q2 < 0.0452 GeV2

χ

Δ1 =
9
4 ∫

∞

0

dQ2

Q2 {F2
2(Q2) +

8m2
p

Q2
B1(Q2)}

B1(Q2) =
4
9 ∫

xth

0
dx β1(τ)g1(x, Q2)

Q2

B1(Q2) = −
κ2

p

8m2
p

Q2 + c1BQ4 = −
κ2

p

8m2
p

Q2 + 4.94 Q4/GeV4

Q2 < 0.3 GeV2
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 with newest Δpol g1,2

• The region  contributed about 15% 
of  and (by our estimate) 30% of the uncertainty. 

• Use standard expansion for the form factor, 
          

• Get Integrand =     

          

• And  Integrand

Q2 < 0.0492 GeV2

Δ1

F2(Q2) = κp(1 −
1
6

R2
PauliQ

2 + …)

9
4

1
Q2 (F2

2 +
8m2

p

Q2
B1) = −

3
4

κ2
p R2

Pauli + 8m2
pc1B

Δ1(0 → Q2
low data) ≈ ⋅ Q2

low data ≈ 1.35
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 with newest Δpol g1,2

• PT has knowledge of  at low , and can do 
the integrals.  Do good approximation by 
expanding the  function for low . 

• Work for a while to get Integrand = 

            , 

• Where  

and  came from   
      

χ g1 Q2

β1 Q2

−
3
4

κ2
p R2

Pauli + 8m2
pc1 −

5m2
p

4α
γ0 + 𝒪(Q2)

γ0 =
2α
m2

p ∫
dν
ν4

g1(ν,0)

c1
I(Q2) ≡ 4mp ∫

dν
ν2

g1(ν, Q2) = − κ2
p + c1Q2 + 𝒪(Q4)
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 with newest Δpol g1,2

• Value for known,  and doing integrals to get , find 
    Integrand  

• Not even same sign! 

• Corresponding numbers for  are  and  

• Remembering , difference 

gives about 50 ppm or about 15% of discrepancy. 

• More to talk about!

c1
Δ1(0 → Q2

low data) ≈ ⋅ Q2
low data ≈ − 0.45

μ ≈ 0.86 −0.20

Δpol =
αmμ

2(1 + κp)πmp
(Δ1 + Δ2)
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thanks again to F. Haglestein et al.


