NREC WORKSHOP 2024

DIRECT DETECTION OF RADIATIVE PHOTONS IN PRAD DATA

Chao Peng

Argonne National Laboratory

For PRad/PRad-II Collaboration

Radiative Effects

An unwanted "background" for all electron scattering measurements

- Reality is complicated
 - Higher order contributions from loop diagrams, internal Bremsstrahlung, straggling effects due to external materials
 - Measured cross sections are obfuscated by the radiative effects
 - Unavoidable for all electron scattering experiments
- Depends on the process and the experimental settings
 - Efforts from both theorists and experimentalists
 - Internal and external radiative correction

Radiative Correction Recipes

- The most famous recipes
 - Mo&Tsai
- Modern precision electron scattering experiments
 - Require precise QED radiative corrections
 - NLO beyond URA for ep and ee (e.g., Akushvich et al. 2015)
 - Higher order calculations (e.g., MCMULE)
 - Monte Carlo simulation for external radiative effects
- Only indirect tests from experimental inputs
 - Data after correction
 - Large discrepancy reported between Mo&Tsai and de Calan, Navelet, and Picard 1991
 - PRad data may provide direct test to the calculations of radiative effects

D. Dutta's talk on Tuesday

PRad Experiment at JLab

Precision measurement of the proton charge radius

- Experimental data taken in 2016 summer at Hall B, Jefferson Lab
- Measured proton electric form factor (G_E) at unprecedented low Q²
 - Elastic electron-proton scattering normalized by Moller process
 - Four momentum transfer square (Q²) from $2x10^{-4}$ to 0.06 GeV²/c²

Experimental Data from PRad Elastic *e-p* process and Møller process

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

J. Zhou's talk on Wednesday

Proton Charge Radius

Data tension on the scattering experiments

Proton Charge Radius

Data tension on the scattering experiments

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Radiative corrections for PRad One of the major systematic uncertainty sources

- NLO calculations beyond URA (Akushvich et al. 2015)
 - ~10% correction to the measured cross sections
- TPE (factorized part) contribution from
 - H. Feshbach
 - O. Tomalak
 - < 0.2% for the experimental kinematic range
- External radiative correction is handled by GEANT4 simulation
 - Event generators with radiative photon emissions
 - Iterative process til data and simulation converge

Simulation with Radiative Effects Comparison with experimental data

• E' spectrum of scattering electrons

U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Direct Measurement of Radiative Photons High precision calorimeter and neutral particle identification

- Data and simulation agree well
 - Indirect test of radiative corrections
 - Both non-radiative (dominant) and radiative contributions
- PRad detectors could detect radiative photons
 - Calorimeter to measure the photon energy and position
 - GEM serves as neutral particle identification
 - Limit on the energy/spatial resolution for the low energy photons
 - Limit on the GEM detection efficiency

PRad Detector System High precision calorimetry

- Hybrid EM calorimeter (HyCal)
 - Inner 1156 PbWO4 modules
 - Outer 576 lead glass modules
- High resolution and efficiency $-2.6\%/\sqrt{E}$ for both e, γ
- Scattering angle coverage: ~ 0.7° to 7.0°
- Full azimuthal angle coverage
 For PbWO4: up to 3.3°

PRad Detector System Gas Electron Multiplier Detectors

- Two large area GEM detectors
- Small overlap region in the middle
 - Systematics control of the efficiency
- Excellent position resolution
 72 µm (for charged particles)
- Insensitive to neutral particles
 - Neutral/charged PID

Events with Explicit Radiative Photons Hard photon emission

- PRad detector system can measure radiative photons
 - HyCal cluster splitting distance at ~3 cm (an opening angle of 0.3° at the maximum distance)
 - Photon energy measurement with HyCal down to 20 MeV
 - Neutral particle (gamma) identification with GEMs
- Explicit radiative event selection
 - -ep coincidence of scattered electron and the radiative photon(s) + elasticity
 - *ee* coincidence of two electrons and the radiative photon(s) + elasticity + coplanarity

Separation of Radiative Photons

U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Møller Ring with Radiative Photons Geometrical distribution

- The symmetric Moller ring selection
 - Single-arm selection at $1.2^{\circ} < \theta_e < 1.3^{\circ}$
 - Elasticity cut with 3.5 σ_E
 - Co-planarity cut
 - Geometrical cut to remove collimator effects
- Radiative events selection
 - Requiring one photon

Radiative Møller Events

Scattered electron energy distribution

Radiative Møller Events

Scattered electron energy distribution

Future Results and Improvement from PRad-II

- Radiative photon distributions
 - Opening angle θ_{γ} and energy E_{γ}
 - All Møller events
 - Elastic ep events
- Improvement with PRad-II data
 - Higher statistics (critical for two-dimensional distribution of radiative photons)
 - Better PID efficiency with two GEM planes

Summary

- Direct measurement of radiative photons in PRad data
 - Experimental input to the direct test of radiative corrections for *ep* and *ee* scattering
 - Negligible effect on ISR due to window-less target
 - Measurement of radiative photon distributions
 - Limitation on the minimum photon energy and PID efficiency
- Expect a significant improvement from PRad-II
 - Wider kinematic coverage, higher statistics
 - Better PID and efficiency with two GEM detectors

THANK YOU

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Simulation vs. Data

