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2Analyticity: Motivation

Implications for radius extraction

Correlates FF at  with derivatives at Q2 > 0 Q2 = 0

Predicts size and pattern of higher derivatives 
from singularities

Allows to use data at finite  for radius extraction, 
avoids “extrapolation to zero”

Q2

FFs analytic functions of t = − Q2

Singularities: Branch cuts at  
from hadronic exchanges

t > 0

Position of singularities: Hadron masses 
Strength of singularities: Amplitudes → Theory

Necessary for magnetic radius extraction

Should be implemented 
and used in radius extraction!

Q 2
= t−

t
correlations

singularities

states.. hadronic

0



3Analyticity: Dispersion theory

N

_

...

hadronic
states

N
t > t thr

=F

Dispersive representation

Fi(t) =
∞

∫
tthr

dt′￼

π
Im Fi(t′￼)

t′￼− t − i0

Expresses analytic structure of  
on physical sheet

Fi(t)

Spectral functions  Im Fi(t)

Transition amplitude  
current  hadronic states → → NN̄

Processes in unphysical region  
below  threshold

t < 4m2
N

NN̄

Needs to be calculated theoretically
Frazer, Fulco 1960; Höhler et al 1975+

Isovector:  (incl. ), , , …ππ ρ 4π KK̄
Isoscalar:  (incl. ),  (incl. ), …3π ω KK̄ ϕ

(4mN
2 )

t

thr

spacelike timelike

t



4Analyticity: Two-pion cut

Two-pion cut

Appears in isovector vector form factors
N
_

N

I = J = 1

=
π

π

t > 4Mπ
2

i πiF Γ F

Lowest-mass state, dominates low-   
spacelike form factors, peripheral densities

Q2

 system strongly interacting,  resonanceππ ρ

Spectral functions on two-pion cut

Analytic continuation of  scattering dataπN

Chiral EFT? Direct calculations poorly convergent because of strong  interactionsππ

Frazer, Fulco 1960; Höhler et al 1975+

Roy-Steiner equations for  scatteringπN
Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meissner 2016

Gasser, Sainio, Svarc 1988; Becher, Leutwyler 1999; Kubis, Meissner 2001; Kaiser 2003; ... 

Need different approach!



5DIChEFT: Elastic unitarity and  interactionsππ

Elastic unitarity relation

   partial-wave amplitudeΓi(t) ππ → NN̄

π

π

−

_

I = J = 1

=

> 4Mπ
2

N

=

t

measured incalculated in

chiral EFT π+ π

N

2

e+e−

ii

Γi

VF

F

π

π

F

Fπ

Γ

  current  amplitude = pion timelike FFFπ(t) → ππ

Amplitudes have same phase from  
  interactions: Watson theoremππ

Factorize  interactions (N/D representation)ππ

 free of  interactionsΓi /Fπ ππ

 contains  interactions|Fπ |2 ππ

 calculated in ChEFT with good convergence→

 measured in  annihilation→ e+e−

Im Fi(t) =
k3

cm

t
Γi(t) F*π (t)

=
k3

cm

t

Γi(t)
Fπ(t)

|Fπ(t) |2
Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 96, 18 (2017) 
Alarcon, Weiss, PLB 784 (2018) 373; PRC 97 (2018) 055203

Alt. formulation: Granados, Leupold, Perotti 2017



6DIChEFT: Calculation

Relativistic ChEFT

Include  isobarΔ

Expansion in {Mπ, kπ}/Λ𝖼𝗁𝗂𝗋𝖺𝗅

Pion timelike form factor |Fπ |2

Measured accurately in  e+e− → π+π−
ChEFT

=  sqrt(t)

Figure from Jegerlehner 15

+ N2LO

=

∆N

+ + N2LO

F

Γ

π

i

ChEFT calculation of Γi /Fπ

LO: Born terms + Weinberg-Tomozawa

NLO: Contact term in Γi (i = 2)

N2LO: Contact term and pion loops 
Presently use partial result  
Contains LEC, to be determined

Good convergence



7DIChEFT: Sum rules and parameters

Spectral functions

High-mass region parametrized by effective poles  
Pole positions  theoretical uncertainty→

 region calculated from unitarity + ChEFTππ

GeV 20 4Mπ
2 t

Im F
ππ
calculated

high−mass
1, 2 eff. pole

~

Variation with radius

1 Sufficient for low-  form factorsQ2

Sum rules and parameters

Spectral functions constrained by sum rules 
for charges, radiiF(0), F′￼(0) =

Sum rules connect ChEFT LECs  nucleon radii↔

Nucleon radii appear directly as parameters, 
control finite-  behavior of form factorsQ2

1
π ∫

∞

tthr

dt
Im F1(t)

t
= Q

1
π ∫

∞

tthr

dt
Im F1(t)

t2
=

1
6

⟨r2⟩1

1
π ∫

∞

tthr

dt
Im F2(t)

t
= κ

1
π ∫

∞

tthr

dt
Im F2(t)

t2
=

1
6

κ⟨r2⟩2

[+ asymptotic conditions]



8DIChEFT: Spectral functions

Bands show uncertainty from radii (PDG range) 
Uncertainty from high-mass pole position  later→

DIχEFT

Belushkin et al.

Hoferichter et al.
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Good agreement with Roy-Steiner results
Hoferichter et al. 2017

Alarcon, Weiss, PLB784, 373 (2018) [INSPIRE]

Here: GE, GM ↔ F1, F2

Depend on radii as parameters

https://inspirehep.net/literature/1664308


9DIChEFT: Form factors

Family of FF predictions depending on radii 
as parameters

Each member respects analyticity, sum rules

Each member has intrinsic theoretical 
uncertainty from high-mass states

Radius correlated with finite-  behavior!Q2

Radius extraction using DIChEFT

Compare DIChEFT FF predictions with data, 
for various values of radius parameter

Example: Charge radius 0.844(7) fm extracted from fit to FF data,  
Q2 range up to ~0.5 GeV2, uncertainties estimated

rp
E =

Alarcon, Higinbotham, Weiss, Ye PRC 99, 044303 (2019) [INSPIRE]

DIχEFT: Form factors 6

E

Blue: Empirical FF

DIXEFT FF
rVariation with radius

GM similar, dependence on rM

Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303
Empirical FF: Global fit Ye et al 2017

• Form factors from dispersion integral

GE,M(t) =

∞∫

4M2
π

dt′

π

ImGE,M(t′)

t′ − t − i0

• Family of FFs depending on radii

Each member respects analyticity, sum rules

Each has intrinsic theoretical uncertainty

• Radius correlated with finite-Q2 behavior

Provided by analyticity

Use for radius extraction!

Gi(t) =
∞

∫
4M2

π

dt′￼

π
Im Gi(t′￼)

t′￼− t − i0 Radius constrained by finite-Q2 data

Optimal Q2 range determined by interplay  
of radius sensitivity and exp+thy uncertainties

https://inspirehep.net/literature/1694463


10Radius extraction: ep Mainz

dσ
dΩ

= ( dσ
dΩ )

Mott

ϵ [Gp
E]2 + τ[Gp

M]2

ϵ(1 + τ)

Alarcon, Higinbotham, Weiss, PRC 102, 035203 (2020) [INSPIRE]

Used DIChEFT  depending on GE,M rp
E, rp

M

Fitted cross sections with floating normalizations

Quantified fit and theoretical uncertainties

DIChEFT enables accurate magnetic radius extraction

Sensitivity to  only at , needs theoryGM Q2 > 0

rp
E = 0.842 ± 0.002 (fit 1σ) +0.005

−0.002 (theory full-range) fm

rp
M = 0.850 ± 0.001 (fit 1σ) +0.009

−0.004 (theory full-range) fm

Extracted electric + magnetic radii 
from fit to cross section data

Conventional dispersion analysis: Lorenz, Hammer, Meissner 2012

https://inspirehep.net/literature/1780084


11Radius extraction: ep Mainz

Alarcon, Higinbotham, Weiss, PRC 102, 035203 (2020) [INSPIRE]

Mainz A1 data and DIχEFT fit 
Bands: Fit uncertainty

 profile in electric and magnetic radiusχ2

https://inspirehep.net/literature/1780084


12Radius extraction: µp MUSE

First measurement of proton radius in  scatteringμp + ep
k = 115—210 MeV, Q2 = 0.001—0.08 GeV2

What kinematics has most impact on radius? 
What is the overall uncertainty including theory?

Tradeoff between: 
Sensitivity of cross section to radius 
Theoretical uncertainty 
Two-photon exchange corrections

Two-photon exchange: Tomalak, Vanderhaeghen 2018

Studied radius extraction with DIChEFT

F. Gil-Dominguez, J.M. Alarcon, C. Weiss PRD 108 074026 (2023) [INSPIRE]

Findings

Influence of TPE on radius extraction diminished at higher Q2

Optimal kinematics for radius extraction  
k = 210 GeV, Q2 = 0.05–0.08 GeV2

6

FIG. 3. DI�EFT predictions for the µ�p di↵erential cross
section at MUSE for several assumed values of the proton
radius. The cross section predictions include the TPE cor-
rection, Eq. (10), and are normalized to the standard dipole
cross section without TPE e↵ects. Lines (solid, dashed, dot-

ted, dahed-dotted): Nominal DI�EFT predictions for the as-
sumed value of the proton radius (see legend). Shaded bands

around lines: Intrinsic theoretical uncertainty of DI�EFT pre-
dictions, unrelated to assumed proton radius. Shaded band at

bottom: TPE contribution to cross section [14].

section, (⌧P /✏)G2
M/G2

E , in MUSE kinematics. One sees
that the ratio depends mainly on Q2, having values ⇠0.1
at Q2 = 0.04 GeV2 and reaching ⇠0.4 at Q2 = 0.08
GeV2. Overall, the magnetic contributions to the cross
section are limited in all kinematic settings. Using the
DI�EFT framework and the results of the analysis of ep
scattering data of Ref. [9], we have computed the e↵ect

FIG. 4. Ratio of magnetic and electric contributions to the
µp elastic scattering cross section, (⌧P /✏)G

2
M/G2

E , in MUSE
kinematics. The vertical dotted lines represent the kinematic
upper limits of Q2 at the given beam momentum k, Eq. (4).

of the experimental uncertainties of GM on the µp cross
section predictions in MUSE kinematics. We observe a
maximum variation in the cross sections of the order of
0.04% at the highest Q2, which is small compared to the
variation of ⇠1% resulting from a change of the electric
radius �rE/rE = 1%. We conclude then that the current
experimental uncertainties in GM do not limit the extrac-
tion of the proton electric radius from the µp scattering
data at the accuracy considered here.

B. Optimal kinematics for proton radius extraction

In the second step, we discuss the optimal kinematic
range for the radius extraction at MUSE. It is determined
by the trade-o↵ between the sensitivity of the cross sec-
tion to the radius, the theoretical uncertainties of the
DI�EFT FF predictions and the TPE corrections, and
the experimental errors of the cross section measurement.
While the experimental errors can only be estimated at
present, some interesting conclusions can already be ob-
tained at this stage.
To make this assessment, we use the di↵erence between

the cross section predictions for di↵erent radii in Fig. 3
as an estimate of the experimental accuracy required to
discriminate between these values of the radii. At each
value of Q2 in Fig. 3, we compute the minimal di↵erence
between the cross section predictions for radii di↵ering by
a given �rE , taking the minimum over all pairs of radii
with the given �rE , and taking into account their the-
oretical uncertainties (i.e., computing the minimal gap
between the theoretical uncertainty bands of the cross
section predictions for a given �rE). The minimal cross
section di↵erence computed in this way is independent
of the nominal value of rE . Figure 5 shows the min-
imal cross section di↵erences obtained in this way, for
radius di↵erences �rE = 0.01, 0.02, 0.03 and 0.04 fm,
as functions of Q2. One observes: (a) The cross section

https://inspirehep.net/literature/2665258


13Applications: Transverse densities

Charge/magnetization densities at light-front time x+

F1,2(t = − Δ2
T) = ∫d2b eiΔTb ρ1,2(b)

ρ
1

(b)ρ
2

(b)

z

x

S y

∼

y

b Frame-independent, appropriate for relativistic systems
Soper 1976, Burkardt 2000, Miller 2007

Fourier transform of form factor data
Miller 2007; Carlson Vanderhaeghen 2008; Venkat, Arrington, Miller, Zhan 2010

Strikman, Weiss PRC 82, 042201 (2010) [INSPIRE]; Miller, Strikman, Weiss PRC 84 , 
045205 (2011) [INSPIRE]; Granados, Weiss JHEP 01, 092 (2014) [INSPIRE]

t

2
π4

t√ <∼ 1/b

M

Dispersive representation

ρ(b) =
∞

∫
4M2

π

dt
2π2

K0( tb) Im F(t)  K0 ∼ e−b t

Exponentially convergent, acts as filter t ≲ 1/b
Large distances   low masses b ↔ t

→ Peripheral densities
→ Uncertainty quantification } with analyticity

https://inspirehep.net/literature/852259
https://inspirehep.net/literature/902055
https://inspirehep.net/literature/1246920


14Transverse densities: DIChEFT results

Large-  asymptotics governed by spectral propertiesb

14

FIG. 7. (Color online) Isovector densities ⇢V1 (b) (left column) and �e⇢V2 (b) (right column) and their relative uncertainties
obtained with the DI�EFT spectral functions. In each column: Upper panel, solid line: DI�EFT prediction with nominal
parameters. Middle panel: Relative uncertainty from high-mass states. Lower panel: Relative uncertainty from nucleon
isovector radii. Upper panel, dotted line: Density from empirical FFs [48].

FIG. 8. (Color online) Same as Fig. 7, but showing the radial densities 2⇡b⇢V1 (b) (left column) and �2⇡be⇢V2 (b) (right column)
and their absolute uncertainties.

Difficult to obtain from Fourier transform. Requires proper analyticity of form factor!

Densities predicted with relative uncertainties  at ≲ 10 % b > 0.3 fm

Excellent agreement with empirical densities

ρV
1 (b) ρ̃V

2 (b)

Alarcon, Weiss PRD 106, 
054005 (2022) [INSPIRE]

https://inspirehep.net/literature/2072323


15Transverse densities: Uncertainty quantification

Shape of high-mass spectral function unknown 
 treat as theoretical uncertainty→

10

sitive to the low-mass part, such as the peripheral den-
sities. We estimate this uncertainty by varying the po-
sitions of the high-mass poles in the isovector spectral
functions, Eqs. (43) and Eqs. (52). As the plausible range
of variation we consider

t
(V,0)
1 , t

(V,1)
1

t
(V,0)
2 , t

(V,1)
2 , t

(V,2)
2

)
= (1.2� 2.4) GeV2 = (2� 4)M2

⇢ .

(60)

This range allows for variations of the pole masses with a
maximum/minimum ratio of 2, which is a very significant
change. Eq. (60) covers the entire region of the secondary
peak of the e

+
e
� annihilation cross section above the

⇢ resonance [40]. In the context of the dual resonance
model, Eq. (60) corresponds to varying the pole position
from the n = 1 resonance at 3M2

⇢ to values that are half
way between this one and the n = 0 or 2 resonances. Note
that we let the mass parameters in the delta functions
vary independently of each other over the given range,
so that the parametrization represents a wide range of
“shapes” of the spectral function.

We further constrain the set of mass parameters by
requiring that the variation of the spacelike FF gener-
ated by the spectral function be within a certain range
around the nominal value. This is essentially a stability
condition, which eliminates extreme values of the mass
parameters that would lead to large excursions of the
spacelike FF and can be ruled out on physical grounds.
We implement this by requiring that (here i = 1, 2)

F
V
i (tref)[varying pole masses]

F
V
i (tref)[nominal]

� 1 < ✏, (61)

where tref < 0 is a spacelike t value. In the following ap-
plications we choose tref = �1 GeV2 and ✏ = 0.1 for both
F

V
1 and F

V
2 ; the choice is justified in the following; other

choices are possible. The parameter variation Eq. (60),
supplemented by the stability condition Eq. (61), gener-
ates a functional variation in the high-mass part of the
spectral function which we regard as the theoretical un-
certainty of our model. Note that the stability condition
Eq. (61) restricts the variation of the theoretical FF pre-
diction relative to the nominal value of the model, not rel-
ative to an experimental value; no fitting to the FF data
is performed here. The parameters tref and ✏ are chosen
such that the resulting theoretical model uncertainty of
the FFs is reasonable and covers the experimental data.
In this way the experimental FF data are used only in
estimating the theoretical uncertainty of the model, not
in determining the nominal model prediction.

To map out the theoretical uncertainty in practice, we
generate a random ensemble of mass parameters in the
range of Eq. (60) and retain those for which the space-
like FFs satisfy the condition Eq. (61). We then use
this restricted ensemble to generate uncertainty bands
in the spectral functions and transverse densities (and
possibly other quantities derived from the spectral func-
tions). Figure 4 illustrates the procedure in the case of

FIG. 4. (Color online) Illustration of the procedure for es-
timating the uncertainty resulting from the high-mass part
of the spectral function ImFV

2 (t). A random ensemble of
parameters for the high-mass pole positions Eq. (60) is gen-
erated. With these parameters, the spectral function and the
spacelike FF are computed. The parameter ensemble is then
restricted to values for which the spacelike FF satisfies the
stability condition Eq. (61) (see upper panel, accept/reject).
The restricted parameter ensemble is then used to evaluate
the uncertainty of the spectral function (middle panel) and
the density (lower panel). In all panels, the functions with
accepted parameters by Eq. (61) are shown as solid black
lines, the ones with rejected parameters as dot-dashed red
lines. The functions with the nominal parameters are shown
by the dashed white line.

F
V
2 . One observes that the procedure generates natu-

ral uncertainty bands, which are approximately symmet-
ric around the nominal value. The resulting uncertainty
will be quoted as “high-mass uncertainty” in the results
below.
We emphasize that the procedure respects analyticity

20 4Mπ
2 t

Im F
ππ

1, 2 calculated
high−mass
parametrized
effective poles

~

?

1GeV

Parametrize through effective poles 
Im F1[high-mass] = a0δ(t − t0) + a1δ′￼(t − t1)

Pole positions considered unknown (in reasonable range) 
Pole coefficients fixed by sum rules

Generate MC ensemble of spectral functions 
Propagate variation into form factors, densities, etc.

Uncertainty quantification consistent with analyticity!

Peripheral densities not sensitive to unknown  
high-mass spectral function - robust predictions!Alarcon, Weiss PRD 106, 054005 (2022) [INSPIRE]

https://inspirehep.net/literature/2072323


16Extensions: Other operators and transitions

Energy-momentum tensor
Nucleon form factors describe distributions of mass, 
momentum, spin, forces - much interest

N
_

J = 2

π

π

N

π
2
+ Tf

3π (incl. ω)N
_

N

Pion matrix elements constrained by chiral symmetry
Voloshin, Dolgov 1982; Polyakov, Weiss 1999

Spin : Generalized FFs = GPD momentsJ > 2

Nucleon FFs with  cut3π
Isoscalar vector current, isovector axial current

Use methods of 3-body unitarity
Szczepaniak, Jackura, Pilloni, Doering et al.

 transition form factorsN → Δ
Compute transition matrix element  
Continue to pole in , extract residue

⟨Nπ |Jμ |N⟩
sπN = m2

Δ

ChEFT calculations
Ledwig et al. 2010

LQCD results
Alexandrou et al. 08; Aubin, Orginos, Pascalutsa, Vanderhaeghen 08

Large-  spin-flavor symmetry connects  and Nc N → N N → Δ

_

∆

N

π

π

π
N
}

FΓ π



17Summary

• Analyticity correlates FF at Q2 = 0 and finite Q2, plays essential role in radius extraction

• DIChEFT: Combines dispersion theory (analyticity, unitarity) with ChEFT (long-range dynamics), 
permits first-principles calculations of ππ spectral functions and low-Q2 form factors

• DIChEFT: Peripheral densities determined with quantified uncertainties, analyticity essential

• Many applications and extensions

• DIChEFT-based radius extraction implements analyticity and information flow

• Highest impact on radius from finite Q2 data, no need for “extrapolation to zero”. 
Assessments depend on actual exp + thy uncertainties, can be updated
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Supplemental material



19Method: Form factor results

Form factors

Band shows uncertainty from radii (uncertainty from high-mass pole position  later)→

Alarcon, Weiss, 
PLB784, 373 (2018)

Exp.
Ye et al.
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Figure 3: Red bands: Proton and neutron EM FFs calculated in our approach and their theoretical uncertainties. Solid black: Empirical FF parametrization of
Ref. [3]. Black dots: Data of the MAMI A1 experiment [4, 5]. Green dots: Lattice QCD results from Ref. [27].
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Excellent agreement with data. No fit, but prediction based on dynamics

Dispersion integral evaluated with spectral functions (including  and high-mass part)ππ

LQCD: Alexandrou et al. 2017

Isovector: DIChEFT 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FIG. 9. (Color online) Transverse charge density ⇢1(b) in the proton (left column) and neutron (right column) obtained from the
DI�EFT results (see text). In each column, the panels show the nominal DI�EFT results and their absolute uncertainties from
high-mass states and from the nucleon radii. The empirical densities are obtained from the FF parametrizations of Ref. [48].

FIG. 10. (Color online) Transverse magnetization density e⇢2(b) in the proton (left column) and neutron (right column)
obtained from the DI�EFT results (see text). In each column, the panels show the nominal DI�EFT results and their
absolute uncertainties from high-mass states and from the nucleon radii. The empirical densities are obtained from the FF
parametrizations of Ref. [48].

20Transverse densities: DIChEFT results
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21Transverse densities:  current and spin effectsJ+

Plus current density in transversely polarized nucleon 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