Towards the Measurement of Charge Radii from Lithium to Neon

Ben Oha For the QUARTET collaboration NREC May 2024, CFNS, Stony Brook University

Role of absolute nuclear EM radii

- Mirror nuclei and equation of state Ronald's talk
- Study nuclear structure away from stability Ronald's talk
- Important for weak interaction studies (e.g. for CKM) Misha
- Direct comparison of with state-of-the-art nuclear calculations Phiala Evgeny
- Confronting experiment & theory @ accuracy frontier

• • •

Krzysztof Wilfried Salvatore

	_		
	b		
	\prec		
	\neg		
	\prec		
	\prec	$\sum_{i=1}^{n}$	
	\neg	$\sum_{i=1}^{n}$	
	\neg	\rightarrow	
	\neg	\rightarrow	\square
	\neg		
	\neg	$\left \right\rangle$	$\left \right $
	\neg		$\left \right $
	\neg		\square
	\neg		\square
	\neg	$\left \right $	$\left \right $
	\neg	$\left \right\rangle$	
	\neg	$\left \right\rangle$	
N	\neg		
N			
N			
N			
N			
N			
Ν			
N			
N			
N			
N			
N			
N			
N			
N			
N			
	N		
	. N		

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

b	74	
2		74
		\square
58	69	70
57	68	69
66	67	68
5	66	67
54	65	66
51	62	63
		\Box
N		

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

Reference radii connect MS differences with absolutes

$$r_{A'}^2 = r_A^2 + \delta r_{A,A'}^2$$

	ĺ		/	
b		74		
2	ſ		74	
	Î		Î	Υ
	Ŷ		Î	Y
	Ŷ		Ì	Y
58	ŕ	69	70	Y
57	Ŷ	68	♦ 69	Y
66	Ŷ	67	♦ 68	4
5	Ŷ	66	67	Y
54	Ŷ	65	♦ 66	Y
	Ŷ		Î	Y
	¢		╞──	Y
51	Ŷ	62	63	Y
	Ŷ		Î	Y
	ŕ		Ĵ	Y
	ŕ		╞──	Y
	¢		╞──	Y
	ſ			
	J			
V				
. 1				

Extraction of MS radius difference from measurements

$$\delta v_{A,A'} \approx \left(\frac{1}{M_{A'}} - \frac{1}{M_A}\right) \mathbf{K} + \mathbf{F} \delta r_{A,A'}^2$$

Atomic factors, either calculated or extracted from reference radii (King Plot).

Reference radii connect MS differences with absolutes

$$r_{A'}^2 = r_A^2 + \delta r_{A,A'}^2$$

	ĺ		/	
b		74		
2	ſ		74	
	Î		Î	Y
	Ŷ		Î	Y
	Ŷ		Ì	Y
58	ŕ	69	70	Y
57	Ŷ	68	♦ 69	Y
66	Ŷ	67	♦ 68	4
5	Ŷ	66	67	Y
54	Ŷ	65	♦ 66	Y
	Ŷ		Î	Y
	¢		╞──	Y
51	Ŷ	62	63	Y
	Ŷ		Î	Y
	ŕ		Ĵ	Y
	ŕ		╞──	Y
	¢		╞──	Y
	ſ			
	J			
V				
. 1				

Reference radii and where to find them

bohayon@technion.ac.il

_		<u> </u>
b		
	\square	68
5		
54		
	$ \begin{tabular}{ c c } \hline \hline \\ $	
	$ \begin{tabular}{ c c } \hline \hline \\ $	
\neg	$ \begin{tabular}{ c c } \hline \hline \\ $	
	$\overline{}$	$\overline{}$
	$\left \right $	
	\sim	
	$\left \right $	$\left \right $
)	
V		
. •		

Muonic Atoms 101:

Ordinary atoms

Characteristic length (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_{\mu}}$

Shorter distances

bohayon@technion.ac.il

Muonic Atoms 101:

Ordinary atoms

Characteristic length (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

Characteristic **Energy** $E_n = -\frac{Z\alpha}{2a_n} = -\frac{R_\infty Z^2}{n^2}$ (Rydberg: $R_{\infty} = \frac{\alpha}{2a_0} \sim 13.6 \ eV$):

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_{\mu}}$

Shorter distances

Higher energies

 $MW \rightarrow Laser$ *Laser* \rightarrow *x* - *ray*

Muonic Atoms 101:

Ordinary atoms

Characteristic **length** (Bohr radius: $a_0 = \frac{\hbar}{m_e c \alpha} \sim 0.5 \text{\AA}$):

(Rydberg: $R_{\infty} = \frac{\alpha}{2a_0} \sim 13.6 \, eV$): $E_n = -\frac{Z\alpha}{2a_m} = -\frac{R_{\infty}Z^2}{n^2}$ $\times 200$

Finite Nuclear Size effect: $\Delta E_{FNS} \sim \frac{4}{3} \frac{R_{\infty} Z^4}{n^3} \left(\frac{r_c}{a_0}\right)^2 \delta_{l0}$

For Hydrogen 1s-2p: $\sim 4 \text{ neV} (1 \text{ MHz}, \text{ppb})$

Muonic atoms

 $\frac{n^2 a_0}{Z} \frac{m_e}{m_\mu}$

Shorter distances

 $MW \rightarrow Laser$ *Laser* \rightarrow *x* - *ray*

Higher energies

 $\xrightarrow{\times (200)^3} \qquad \qquad \frac{4}{3} \frac{R_{\infty} Z^4}{n^3} \left(\frac{r_c}{a_0}\right)^2 \left(\frac{m_{\mu}}{m_e}\right)^3 \delta_{l0}$

~ 30 meV, 10 ppm

bohayon@technion.ac.il

Measuring nuclear radii with muonic atoms:

- 1. Captured around N=14
- 2. All electrons are emitted
- 3. Cascade to ground level
- 4. Muon decay ~ $2\mu s$
- 5. $E_{2P-1S} = E_{QED} + \Delta E_{FNS} + \cdots$

"Old school" combined analysis of muonic atoms and electron scattering:

where to find reference-radii?

K. Pachucki, V. Lensky, F. Hagelstein, S. S. Li Muli, S. Bacca, and R. Pohl Rev. Mod. Phys. 96, 015001 – Published 24 January 2024

Z = 1 or 2:

Comprehensive theory of the Lamb shift in light muonic atoms

where to find reference-radii?

Comprehensive theory of the Lamb shift in light muonic atoms

Z = 1 or 2:

K. Pachucki, V. Lensky, F. Hagelstein, S. S. Li Muli, S. Bacca, and R. Pohl Rev. Mod. Phys. **96**, 015001 – Published 24 January 2024

Table of experimental nuclear ground state charge radii: An update

Z > 2:

I. Angeli^a, K.P. Marinova^{b,*}

^a Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen Pf. 105, Hungary ^b Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia 2013

Radii of light nuclei from muonic atom x-ray spec.

Experiment

New experiments needed!

Theory (and its inputs)

Would clearly benefit from modern analysis!

Radii of light nuclei from muonic atom x-ray spec.

0.30% 0.25% What is the spike in experimental uncertainty below Z=11? 0.20% σ_r r 0.15% 0.10% 0.05%

bohayon@technion.ac.il

Experiment

New experiments needed!

Theory (and its inputs)

Would clearly benefit from modern analysis!

• For *Z* < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

Krzysztof Salvatore Yang ...

Ζ

• For Z < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

Krzysztof Salvatore Yang

• For **Z** > 6:

Measured x-rays from muonic atoms using solid-state detectors.

Nathalia Konstantin

• • •

 σ_r/r

• For *Z* < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

Krzysztof Salvatore Yang

• For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors.

Nathalia Konstantin

For Z = 3 - 5, and others:
 Electron scattering (I would like to discuss with this community!)

Yuki Honda (Tuesday), Jingyi Zhou (Wednesday), Adrian Signer (Wednesday), Toshimi Suda (Friday)

Ζ

• For *Z* < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

Krzysztof Salvatore Yang

• For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors.

Nathalia Konstantin

- For Z = 3 5, and others:
 Electron scattering (I would like to discuss with this community!)
 - Yuki Honda (Tuesday), Jingyi Zhou (Wednesday), Adrian Signer (Wednesday), Toshimi Suda (Friday)

• For Z = 6

Measured with crystal spectrometer. Not widely applicable

Ζ

• For *Z* < 3:

Laser spectroscopy of muonic atoms, limited by nuclear theory

Krzysztof Salvatore Yang

• For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors.

Nathalia Konstantin

- For Z = 3 5, and others:
 Electron scattering (I would like to discuss with this community!)
 - Yuki Honda (Tuesday), Jingyi Zhou (Wednesday), Adrian Signer (Wednesday), Toshimi Suda (Friday)

• For Z = 6

Measured with crystal spectrometer. Not widely applicable

),

For *Z* < 3: \bullet Laser spectroscopy of muonic atoms, limited by nuclear theory

> Krzysztof Salvatore

Nat

Kon

Jing

Adr

Tos

For **Z** > 6: Measured x-rays from muonic atoms using solid-state (

For Z = 3 - 5, and others: ulletElectron scattering (I would like to discuss with this co Yuk

High-resolution,

• For Z = 6

 \bullet

Measured with crystal spectrometer. Not widely applicable

Ζ

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time

Metallic Magnetic Calorimeters (MMCs)

$$\frac{\delta E_{FNS}}{E_0} \sim Z^2 \left(\frac{r_c}{a_0}\right)^2 \left(\frac{m_\mu}{m_e}\right)^2 \sim 10^{-4} Z^2$$

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time

$$\frac{\delta E_{FNS}}{E_0} \sim Z^2 \left(\frac{r_c}{a_0}\right)^2 \left(\frac{m_\mu}{m_e}\right)^2 \sim 10^{-4} Z^2$$

Cryogenic microcalorimeters

- High quantum efficiency
- Broadband (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time (important for background suppression)

Cryogenic microcalorimeters Quantum Interactions with Exotic Atoms

More info:

arXiv:2311.12014 arXiv:2310.03846

igh quantum efficiency

- **Broadband** (important for calibration)
- Superb resolution $\left(\frac{E}{\Gamma_E} > 10^3\right)$
- Fast rise time (important for background suppression)

Experimental scheme

Target choice and preparation

Used targets:

- Blank Cu ullet
- $^{nat}Li = 92\% ^{7}Li, 8\% ^{6}Li 2 \text{ mm thick}$ ullet
- ${}^{6}Li = 95\% {}^{6}Li, 5\% {}^{7}Li$ 2 mm thick ullet
- ⁹*Be*, 99.0% pure, 2.5 mm thick ullet
- $^{nat}B = 80\%^{11}B, 20\%^{10}B$ 2 mm thick ullet
- $^{12}C(>99\%)$ powder in Cu or Alu pouch, 0.5 g ullet
- $^{13}C(>99\%)$, D-fructose in Cu or Alu pouch, 1 g ullet
- XRF targets: Mo and Ag foils on Cu grid ullet

Stopping power optimized with G4beamline

Chamber covered with Cu

Test-beam summary: Tested calibration sources

E(keV)

Preliminary calibrated spectrum with mixed Li target

Preliminary calibrated spectrum with mixed Li target

Preliminary zoomed-in spectrum of mixed Li target

QUARTET goals

• Phase I: order of magnitude improvement in radii of Li, Be, B

Ζ

QUARTET goals

- Phase I: order of magnitude improvement in radii of Li, Be, B
- Phase II: Heavier systems

Ζ

Output I: Reference radii

Improve entire chains:

^{6-9,11}Li:

Output I: Reference radii

Improve entire chains:

Testing nuclear theory

Evgeny's talk

Accuracy goals for learning about QED in helium-like-ions?

Wilfried's talk

Output II: light Mirror Nuclei

S. J. Novario, et. al., PRL 130, 032501 (2023)

Output II: light Mirror Nuclei

*Priv. Com. With W. Nörtershäuser

Output III: Muonic vs. electronic Isotope shifts

Pachucki's talk:

Deuteron-proton charge radii difference: perfect agreement

Z=1
$$r_d^2 - r_p^2|_{\text{muonic}} = 3.8200(7)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2$$
$$r_d^2 - r_p^2|_{\text{electronic}} = 3.8207(3) \text{ fm}^2.$$

Helion-alpha charge radii diference: 3.6 σ disagreement !!!

Z=2
$$r_h^2 - r_\alpha^2 |_{\text{muonic}} = 1.0636(6)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2 \text{ (CREMA, 2023)}$$

 $r_h^2 - r_\alpha^2 |_{\text{electronic}} = 1.0757(15) \text{ fm}^2 \text{ (Eikema, 2023)}$

Output III: Muonic vs. electronic Isotope shifts

Pachucki's talk:

Deuteron-proton charge radii difference: perfect agreement

Z=1
$$r_d^2 - r_p^2|_{\text{muonic}} = 3.8200(7)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2$$
$$r_d^2 - r_p^2|_{\text{electronic}} = 3.8207(3) \text{ fm}^2.$$

Helion-alpha charge radii diference: 3.6 σ disagreement !!!

Z=2
$$r_h^2 - r_\alpha^2 |_{\text{muonic}} = 1.0636(6)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2 \text{ (CREMA, 2023)}$$

 $r_h^2 - r_\alpha^2 |_{\text{electronic}} = 1.0757(15) \text{ fm}^2 \text{ (Eikema, 2023)}$

Motivation to measure lithium:

PRA 87, 032504 (2013)

Output III: Muonic vs. electronic Isotope shifts

Pachucki's talk:

Deuteron-proton charge radii difference: perfect agreement

Z=1
$$r_d^2 - r_p^2|_{\text{muonic}} = 3.8200(7)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2$$
$$r_d^2 - r_p^2|_{\text{electronic}} = 3.8207(3) \text{ fm}^2.$$

Helion-alpha charge radii diference: 3.6 σ disagreement !!!

Z=2
$$r_h^2 - r_\alpha^2 |_{\text{muonic}} = 1.0636(6)_{\text{exp}}(30)_{\text{theo}} \text{ fm}^2 \text{ (CREMA, 2023)}$$

 $r_h^2 - r_\alpha^2 |_{\text{electronic}} = 1.0757(15) \text{ fm}^2 \text{ (Eikema, 2023)}$

Motivation to measure lithium:

PRA 87, 032504 (2013)

Nature volume 606, pages 479-483 (2022)

 m_{ϕ} (keV/c²)

Summary

- Charge radii are central for confronting theory with experiment 1.
- 2. Only for Z=1,2, they are both **precise** & **reliable**
- 3. For Z>10, they are **precise** bot not **reliable** (opportunities for theory)
- 4. For Z=3-10, not precise. Limited by available experimental methods
- 5. New collaboration QUARTET: Determine radii via x-ray spectroscopy of light muonic atoms using novel cryo-calorimeters
- 6. Successful test last October, physics run next September, stay tuned...

Points of discussion:

Modern scattering on Lithium and Boron in JLAB

Modern QED and

What are the accuracy goals for :

- testing nuclear theory? lacksquare
- Learning about mirror nuclei?
- Comparing with helium-like-ions? \bullet

Is NREC the right platform to lunch a new EM radii table (à-la AME)?

