NREC Workshop 2024

Improved nuclear structure effects in helium and muonic helium atoms

Simone Salvatore Li Muli

Chalmers University of Technology

Muonic atoms

Can be used as precision probes for nuclear physics

The proton radius

Muonic Hydrogen - Pohl et al., Nature (2010) - Antognini et al., Science (2013)

Muonic Deuterium - Pohl et al., Science (2016)

Muonic Helium isotopes - Krauth et al., Nature (2021) - Schuhmann et al., Arxiv (2023)

$\mathbf{E}_{\mathrm{LS}} = \mathbf{E}_{\mathrm{QED}} + \mathbf{C}r_c^2 + \mathbf{E}_{\mathrm{TPE}} + \dots$

 $\mathbf{E}_{\mathrm{LS}} = \mathbf{E}_{\mathrm{QED}} + \mathbf{C}r_c^2 + \mathbf{E}_{\mathrm{TPE}} + \dots$

 $\mathbf{E}_{\mathrm{LS}} = \mathbf{E}_{\mathrm{QED}} + \mathbf{C}r_c^2 + \mathbf{E}_{\mathrm{TPE}} + \dots$

$$\mathbf{E}_{\mathrm{LS}} = \mathbf{E}_{\mathrm{QED}} + \mathbf{C}r_c^2 + \mathbf{E}_{\mathrm{TPE}} + \dots$$

 $\mathbf{E}_{\mathrm{LS}} = \mathbf{E}_{\mathrm{QED}} + \mathbf{C}r_c^2 + \mathbf{E}_{\mathrm{TPE}} + \dots$

 $E_{\rm LS} = E_{\rm QED} + Cr_c^2 + E_{\rm TPE} + \dots$

• Our strategy is to build models for the operators from first principles

 $\mathrm{H} \ \{
ho_{\mathrm{ch}}, J_i, B_{ij}\}$

from chiral effective field theory

• Solve the many-body time-independent Schrödinger equation of the nucleus

 $H\left|N\right\rangle = E_{N}\left|N\right\rangle$

• Calculate the relevant matrix elements with controlled approximations.

 $\langle \mathrm{N} | \rho_{\mathrm{ch}}(\mathbf{x}) | 0 \rangle$

Nuclear Hamiltonians from ChEFT

• Degrees of freedom

- Symmetries
- Power counting

Bayesian uncertainty quantification

ChEFT is an expansion in powers of $\ Q=rac{m_\pi}{\Lambda_\chi}\sim 0.3$

We assume that a similar expansion holds also for the calculated observables

$$X = \sum_{n=0}^{k} D_n + \sum_{n=k+1}^{\infty} D_n$$
$$= X_{\text{ref}} \left[\sum_{n=0}^{k} c_n Q^n + \sum_{n=k+1}^{\infty} c_n Q^n \right]$$

We assume that the expansion coefficients follow the same underlying distribution and use the calculated coefficients to learn about the distribution.

Helium isotopes charge radii

$$E_{LS} = E_{QED} + Cr_c^2 + E_{TPE} + E_{3PE} + \dots$$

Helium isotopes charge radii

$$E_{\rm LS} = E_{\rm QED} + Cr_c^2 + E_{\rm TPE} + E_{\rm 3PE} + \dots$$

SSLM, Thomas R. Richardson, Sonia Bacca, Arxiv:2401.13424

Isotope shift of muonic Helium

Exploiting correlations

$$\Delta \left[E_{\rm TPE}(^{4}{\rm He}) - E_{\rm TPE}(^{3}{\rm He}) \right] = \sqrt{\Delta E_{\rm TPE}^{2}(^{4}{\rm He}) + \Delta E_{\rm TPE}^{2}(^{3}{\rm He}) - 2\rho_{12}\Delta E_{\rm TPE}(^{3}{\rm He})\Delta E_{\rm TPE}(^{4}{\rm He})}$$

Is obtained from the Bayesian analysis

Are obtained from the Bayesian analysis

- We can extract the correlation coefficient
- $\rho_{12} \approx 0.8$
- We assume that the remaining nuclear structure effects (3photon-exchange, etc...) are correlated with the same correlation coefficient.
- The inclusion of correlations significantly reduces the uncertainties in the isotope-shift theory.

Isotope shift of muonic Helium

Isotope shift of muonic Helium

SSLM, Thomas R. Richardson, Sonia Bacca, Arxiv:2401.13424

The future pipeline

A. Antognini et al, Arxiv:2210.16929

The future pipeline

In collaboration with scientists at Chalmers and ORNL

	2N force	3N force	4N force
LO	\times +-+		
NLO	×です 文章		
N2LO		++++X ×	
N3LO	文 ま ま ま	₄↓ ≯+ ≮X	+ 1 1×1

Christian Forssén

Tor Djärv

Bijaya Acharya

Backup

Evaluation of the TPE term

The amplitudes define a complex potential that shift the 2S-energy of the bound muon by

$$\Delta \mathcal{E}_{2S} = \langle \phi_{2S} | \operatorname{Re}[i\mathcal{M}] | \phi_{2S} \rangle$$

With $|\phi_{2S}\rangle$ being the 2S-state of the muon. At our level of precision there are no corrections to 2P-states.

Evaluation of the TPE term

$$\begin{split} \Delta E_{2\mathrm{S}} &= -8\alpha^2 m \ \phi_{2\mathrm{S}}^2 \Biggl\{ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \left\langle 0 \right| \rho_{\mathrm{ch}}^{\dagger}(\mathbf{y}) \left| N \right\rangle \left\langle N \right| \rho_{\mathrm{ch}}(\mathbf{x}) \left| 0 \right\rangle \ \mathbf{I}_{\mathrm{N}}(z) \\ &+ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \left\langle 0 \right| J_i^{\dagger}(\mathbf{y}) \left| N \right\rangle \left\langle N \right| J_j(\mathbf{x}) \left| 0 \right\rangle \left[\delta_{ij} J_N(z) + z^i z^j \bar{J}_N(z) \right] \\ &+ \int d^3 x \ d^3 y \ B^{ij}(\mathbf{x}, \mathbf{y}) \ \frac{1}{2} \Big[\delta_{ij} K(z) + z_i z_j \bar{K}(z) \Big] \Biggr\} . \end{split}$$

With $z = |\mathbf{x} - \mathbf{y}|$.

- The five structure functions are known by calculating the leptonic part of the Feynman diagrams.
- The nuclear matrix elements must be calculated numerically from Nuclear Theory.

TPE corrections in muonic Helium

C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

27

Benchmark tests

S.S. LM, S. Bacca, N. Barnea, Front. Phys. 9, 671869 (2021)

Benchmark tests

A matter of precision

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm FS}^{(4)} \times r_c^2 + \delta_{\rm TPE}^{(5)} + \delta_{\rm 3PE}^{(6)} + \dots$$

For the muonic Helium-3 ion

$$\delta_{\text{QED+NR}} = +1,644.348(8) \text{ meV}$$

$$\delta_{\text{FS}}^{(4)} = -103.383 \text{ meV fm}^{-2}$$

$$\delta_{\text{TPE}}^{(5)} = +15.499(378) \text{ meV}$$

$$\delta_{3\text{PE}}^{(6)} = -0.214(214) \text{ meV}$$

$$\delta_{\text{HO}}^{(5)} = -0.667(25) \text{ meV}$$

$$r_c = 1.97007(12)_{\rm ex}(93)_{\rm th}$$
 fm

K. Schuhmann et. al. Arxiv 2305.11679 (2023)

Evaluation of the NS effects

$$\begin{split} \Delta E_{nl} &= -8\alpha^2 m \ \phi_{nL}^2 \int \frac{d^3 q}{4\pi} \left\{ \sum_{N \neq 0} |\langle N| \rho_{\rm ch}(\mathbf{q}) |0 \rangle|^2 \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} \right. \\ &+ \sum_{N \neq 0} |\langle 0| \mathbf{J}_{\perp}(\mathbf{q}) |N \rangle|^2 \left[\frac{q^2}{4m^2} \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} - \frac{1}{4m^2 q^3} \frac{\omega_N + 2q}{(\omega_N + q)^2} \right] \\ &+ \left. \left. + B_{\perp}(\mathbf{q}) \frac{1}{8m^2 q^2} \left(\frac{1}{q} - \frac{1}{E_q} \right) \right\} \end{split}$$

eta-expansion uncertainty

$$\begin{split} \Delta E_{nl}^{\mathrm{NR}} &= -8\alpha^2 \ \phi_{nl}^2 \sum_{N \neq 0} \int d^3x \ d^3y \ \langle 0 | \ \rho_{\mathrm{ch}}^{\dagger}(\mathbf{y}) | N \rangle \ \langle N | \ \rho_{\mathrm{ch}}(\mathbf{x}) | 0 \rangle \ \mathrm{I}_{\mathrm{NR}}(z) \\ &= -8\alpha^2 \ \phi_{nl}^2 \sum_{N \neq 0} \int d^3x \ d^3y \ \langle 0 | \ \rho_{\mathrm{ch}}^{\dagger}(\mathbf{y}) | N \rangle \ \langle N | \ \rho_{\mathrm{ch}}(\mathbf{x}) | 0 \rangle \ \left(\mathrm{I}_{\mathrm{NR}}^{(2)}(z) + \mathrm{I}_{\mathrm{NR}}^{(3)}(z) + \mathrm{I}_{\mathrm{NR}}^{(4)}(z) + .. \right) \end{split}$$

S.S.LM, et al. 2022 J. Phys. G: Nucl. Part. Phys. 49 105101

	$\mu^2 \mathrm{H}$	μ^{3} H	$ \mu^3 \text{He}^+ $	$ \mu^4 \text{He}^+$
C. Ji, et al. (2018)	0.4%	1.3%	1.1%	0.8%
This work	0.8%	1.5%	4.8%	0.9%

32

Uncertainty budget in TPE

	μ^{3} He ⁺			$\mu^4 \text{He}^+$			
	δ_{pol}	δ_{Zem}	δ_{TPE}	δ_{pol}	δ_{Zem}	δ_{TPE}	
	[%]	[%]	[%]	[%]	[%]	[%]	
							S.S.LM, et al. In preparation for 2023
Numerical [1]	0.4	0.1	0.1	0.4	0.3	0.4	
Numerical	0.1	0.2	0.1	0.4	0.3	0.2	
Nuclear model [1]	0.7	1.8	1.5	3.9	4.6	4.4	
Nuclear model (N2LO)	4.8	6.9	6.2	14.5	9.4	11	
Nuclear model (N3LO)	1.6	1.6	1.4	4.1	2.8	3	
η-expansion [1]	1.1	_	0.3	0.8	_	0.2	[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)
η -expansion	4.8	-	1.4	0.9	-	0.2	
Ζα [1]	1.5	0.0	0.4	1.5	0.0	0.4	
Ζα	-	-	-	-	-	-	
ISB [1]	1.8	0.2	0.5	2.2	0.5	0.5	
Nucleon-size [1]	1.2	1.3	0.9	2.7	2.0	1.2	
Relativistic [1]	0.4	_	0.1	0.1	_	0.0	
Coulomb [1]	3.0	-	0.9	0.4	-	0.1	
Total [1]	4.2	2.2	2.1	5.5	5.1	4.6	
Total (N2LO)	7.6	6.9	6.5	10.6	9.6	10.9	
Total (N3LO)	6.3	2.1	2.4	5.3	3.5	3.5	33

Preliminary works on Li atoms

$$\delta_{ ext{TPE}} = \delta_{ ext{D1}}^{(0)} + \delta_{ ext{C}}^{(0)} + \delta_{ ext{Z1}}^{(1)} + \delta_{ ext{Z3}}^{(1)} + \delta_{ ext{NS}}^{(2)} + \delta_{ ext{Q}}^{(2)} + \dots$$

δ _{tpe}	Ref. (1) (meV)	Ref. (2) (meV)		
μ- ⁶ Li ²⁺	-11.8(3)	-15(4)		
μ- ⁷ Li ²⁺	-22.2(4)	-21(4)		

(1) S.L., A.Poggialini, S.Bacca, SciPost Phys. Proc. 3, 028 (2020)
(2) Drake et al, Phys. Rev. A 32, 713 (1985)

Priors

Priors	$\operatorname{pr}(\eta)$	Priors	$\operatorname{pr}(c_i \bar{c})$	$\operatorname{pr}(\overline{c})$
α_{η}	$\frac{1}{\lambda} \exp\left(\frac{\eta}{\lambda}\right)$	A	$\frac{1}{2\bar{c}}\theta(\bar{c}- c_i)$	$\frac{1}{\ln(\bar{c}_{>}/\bar{c}_{<})\bar{c}}\theta(\bar{c}-\bar{c}_{<})\theta(\bar{c}_{>}-\bar{c})$
eta_η	eta(a,b)	В	$\frac{1}{\sqrt{2\pi}\bar{c}} \exp\left(-\frac{c_i^2}{2\bar{c}^2}\right)$	$\frac{1}{\ln(\bar{c}_{>}/\bar{c}_{<})\bar{c}}\theta(\bar{c}-\bar{c}_{<})\theta(\bar{c}_{>}-\bar{c})$

NS effects in 3He+ and 4He+

NS corrections in µ4He+

S.S.LM, et al. In preparation for 2022

