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Quark Mixing & CKM Unitarity
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CKM unitarity: precise test of SM! 
PDG 2022:
|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud

(4)Vus
∼ 10−5∼ 0.95 ∼ 0.05

Cabibbo unitarity deficit

Main news:  
 from superallowed beta decays: 

shift downwards  
Nuclear theory uncertainty increased 

But: Inconsistencies between data sets  
(Neutron lifetime and gA; Kaon decays)

Vud

Muon lifetime —> Fermi constant GF = Gμ = 1.1663788(7) × 10−5GeV−2

Kobayashi & Maskawa: 3 flavors + CPV phase 
CKM unitarity - measure of completeness of the SM:   
Top-row unitarity constraint 

VV† = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

VCKM =

Cabibbo: mass and flavor eigenstates  
connected by Cabibbo angle θC

|GΔS=0
V | = cos θCGμ

|GΔS=1
V | = sin θCGμ
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K±

π±
νμ

μ±

Ratio of kaon/pion leptonic decay rates: ratio Vus/Vud

|Vus /Vud | = 0.23108(23)exp(42)lat(16)IB (51)tot = 0.22 %

Additional input (lattice, EWRC, nuclear theory & experiment) mandatory to get  Vud, Vus
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π

ℓ = μ, e

|Vus | = 0.22330(35)exp(39)lat(8)IB (53)tot = 0.24 %

Kaon semileptonic decays: absolute value of VusK

Superallowed nuclear decays: Vud

Ai(Z, N )

e+
JP = 0+

νe

Af(Z − 1,N + 1)
JP = 0+

|Vud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Status of Cabibbo Unitarity



Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:
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Cabibbo Unitarity - 3 anomalies
Assuming experimental AND theoretical inputs correct: Cabibbo anomaly = BSM signal

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023
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Nuclear beta decays + Kℓ3
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Cabibbo Angle Anomaly as BSM Signal

Vud, Vus, Vud/Vus overconstrained, can solve

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in

�(1)
CKM = 2✏R + 2�✏RV2

us,

�(2)
CKM = 2✏R � 2�✏RV2

us,

�(3)
CKM = 2✏R + 2�✏R

�
2 � V2

us
�
. (9)

The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained

from the combination

r ⌘

0
BBBBB@

1 + �(2)
CKM

1 + �(3)
CKM

1
CCCCCA

1/2

=

Vus
Vud

����
K`2/⇡`2

VK`3
us

V�ud

= 1 � 2�✏R. (10)

Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above

Figure 2: Constraints in the �✏R–✏R plane from the �(i)
CKM introduced in Eq. (8).

The bands with positive slope (red) correspond to �(2)
CKM. The bands with small

negative slope (blue) correspond to �(1)
CKM, while the bands with steep negative

slope (green) correspond to �(3)
CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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Unveiling R-handed quark currents?
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This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
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ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
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CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.
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The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both
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in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.
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cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both
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to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
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The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained
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With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above
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CKM introduced in Eq. (8).
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CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.
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low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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SMEFT scenario: right-handed currents in ud- and us-sectors
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!	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interacCon	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribuCon	not	the	same)

Exp.:	f	-	phase	space	(Q	value)		
t	-	parCal	half-life	(t1/2,	branching	raCo)

Advantages:	
1. Only	conserved	vector	current	
2. 15	measured	to	beSer	than	0.2%	
3. 5	measured	beSer	than	0.05%	
4. Internal	consistency	as	a	check	
5. SU(2)	good	—>	correcCons	~small	
6. We	know	a	lot	about	nuclei

7

“Superallowed” beta decays of I=1, Jp=0+ nuclei

Provides the best measurement 
of V

ud
 :

➢ 23 measured transitions
➢ 15 with ft-precision better 

than 0.23% 

Hardy and Towner, 2020 PRC

m
I
=+1→m

I
=0 m

I
=0→m

I
=-1 

: ft-precision better than t
n
 in

UCNt
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Vud extraction: Universal RC and Universal Ft

9

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)
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Average	of	15	decays Hardy,	Towner	1972	-	2020

Pre-2018:	ℱt = 3072.1 ± 0.7 s
|Vud |2 =

2984.43s
ℱt(1 + ΔV

R)

|V0+−0+

ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

PDG	2022:	ℱt = 3072 ± 2 s

Universal	RC

Nuclear	Structure

Isospin	breaking
QED	(Brems)

Experiment	+		
Coulomb	(theory)



RC to beta decay: overall setup



RC to beta decay: overall setup

Tree-level amplitude

11

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′ (0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV

Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ
Universal 

Nuclear structure dependent  
(QCD)

Nucleus-specific

Nuclear structure independent  
(QED)



RC to beta decay: overall setup

12

Generically: only IR and UV extremes feature large logarithms! 
Works by Sirlin (1930-2022) and collaborators: all large logs under control

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

Sirlin function (outer correction): 
All IR-div. pieces beyond Coulomb distortion

Fermi function: resummation of (Z𝛼)n —> Dirac - Coulomb problem

IR: Fermi function + Sirlin function

9

W

γ ,Zb =

ν

e

h 'h

W

W

γ , ,WZb =

ν

e

h 'h

Z

ν

e

h 'h

W W

ν

e

h 'h

Z

Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

W,Z - loops 
UV structure of SM

Inner RC:  
energy- and model-independent

UV: large EW logs + pQCD corrections

-box: sensitive to all scalesγW

10

γ

ν

e

n p

W

( ) ( ) ν
νν

π
π

NW

W

m
qT

q

q
qm

mqd
c

),(
)2(

Re8Re
2

3
22

22

22

2

4

4
2

m.d
−−

−
= ∫

Nm
qp ⋅

=ν

( ) ),(
2

})0()({
)2(

2
34

4

QT
m

qpi
nJxJTpe

qd

N
AWem

xiq ν
ν

ε
π

βα
µναβ

νµ =∫
⋅

The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

New method for computing EW boxes: dispersion theory 
Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear



RC to  decay - scale separation: historyβ
Fermi function (pure Coulomb + nuclear size & recoil + atomic) —> phase-space f 

Soft Bremsstrahlung: universal Sirlin’s function + nucleus specific corrections —>  
All IR-sensitive pieces: recent review

δ′ R

Fermi,	Behrens-Bühring,	Wilkinson…

13

Hayen	et	al	RMP	2018

UV-sensitive RC on free neutron : Sirlin, Marciano, Czarnecki 1967 - 2006  ΔV
R

G2
V = |Vud |2 [1 +

α
2π {3 ln

MZ

Mp
+ ln

MZ

MW
+ ãg} + δHO

QED + 2 □γW ]

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

Isospin breaking (non-RC): Coulomb repulsion b. protons —> δC MacDonald	1958

Nuclear structure  —> only since1990 δNS
Jaus,	Rasche	1990	

Hardy,	Towner	1992-2020

All scales assumed to be perfectly separated!

≡ [1 + ΔV
R]



Long-Range QED Corrections to   
Beta Spectrum and ft-values

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ

MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS



Recoil correction

Atomic screening and overlap correctionsShape factor: spatial distribution of decay 

Fermi function: e+ in Coulomb field of daughter nucleus

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

QED: Corrections to Decay Spectrum

Unperturbed beta spectrum 4

II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the �
spectrum shape, several other smaller corrections are to
be included when a precision at the 10�4 level is required.
The detailed description of the allowed � spectrum shape,
including these smaller corrections, is given by

N(W )dW =
G2

V
V 2
ud

2⇡3
F0(Z, W ) L0(Z, W ) U(Z, W ) DFS(Z, W, �2) R(W, W0) RN (W, W0, M)

⇥ Q(Z, W ) S(Z, W ) X(Z, W ) r(Z, W ) C(Z, W ) DC(Z, W, �2) pW (W0 � W )2 dW

⌘ G2
V

V 2
ud

2⇡3
K(Z, W, W0, M) A(Z, W ) C 0(Z, W ) pW (W0 � W )2 dW. (4)

Here, Z is the proton number of the daughter nucleus,
W = E/mec2+1 is the total � particle energy in units of
the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =

p
W 2 � 1 the � particle momentum

in units of mec, GV the vector coupling strength in nu-
clei, and V 2

ud
= cos2 ✓C , with ✓C the Cabibbo-angle, is the

square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.

The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
di↵erences in the di↵erent formalisms commonly found

Since Fermi fn is of order 1 —> even small corrections should be assessed. 
A myriad of corrections introduced/estimated by different people in past 9 decades!

Unified method of calculation (matching between them is well-defined)  
numerical solution of Dirac equation with inputs from nuclear theory and experiment

15

Coulomb distortion numerically large: escapes the usual scaling  
Fermi function  (coherent effect, Sommerfeld and  enhancement)

α/π
F0 ∼ Zαπ/β π2



Shape factor: nuclear weak CC transition FF FCW(q2)

Fermi Fn: daughter nuclear charge form factor FCh(q2)

QED

Nuclear Structure Inputs in ft

Charge form factors: combination of e-scattering, X-ray/laser/optical atom spectroscopy 
Slope of the charge FF at origin: nuclear charge radius 
Not all radii are known —> have to be guessed (theory)

Charged-current weak transition form factors: only accessible with the decay itself (tough); 
Historically estimated in nuclear shell model with 1B current (Wilkinson; Hardy & Towner; …) 
Typical result: very similar to charge FF

16

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

New development:  
use isospin symmetry and known charge radii to predict the weak transition radius!



Isospin symmetry + Charge Radii in  isotriplet0+

0+, T = 1, Tz = − 1
0+, T = 1, Tz = 0

0+, T = 1, Tz = 1

17

CY Seng, 2212.02681
RCh,−1 RCh,0

RCh,1

RCW
RCW

Large factors ~Z multiply small differences

3

with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz⟩ as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

⟨1, Tzb|M (1)
m |1, Tza⟩ = C1,1;1,Tzb

1,Tza;1,m
⟨1||M (1)||1⟩ , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

⟨1||M (1)||1⟩ the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is

3

with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz⟩ as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

⟨1, Tzb|M (1)
m |1, Tza⟩ = C1,1;1,Tzb

1,Tza;1,m
⟨1||M (1)||1⟩ , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

⟨1||M (1)||1⟩ the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi)

1 1.000 14 1.481 25 1.513 39 1.553 60 1.572 80 1.599
7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600
8 1.420 16 1.488 30 1.540 49 1.566 66 1.579 92 1.601
9 1.444 17 1.494 32 1.556 52 1.567 68 1.586 94 1.603
10 1.471 18 1.496 35 1.550 53 1.568 70 1.590
11 1.476 20 1.495 36 1.551 54 1.568 74 1.593
12 1.474 23 1.504 38 1.552 55 1.567 76 1.595

Table II: Hartree-Fock calculation of N(Zi) from Ref.[94].

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)rad(0)shape(2)scr(17)QEC
134.64(17)QEC

�0.01(0)rad(0)shape(2)scr
22Mg!22Na 418.27(1)rad(1)shape(7)scr(13)QEC

418.35(13)QEC
�0.02(0)rad(0)shape(2)scr

26Si!26mAl 1027.52(15)rad(12)shape(17)scr(12)QEC
1028.03(12)QEC

�0.05(1)rad(1)shape(2)scr
34Ar!34Cl 3409.89(16)rad(18)shape(60)scr(25)QEC

3410.85(25)QEC
�0.03(0)rad(1)shape(2)scr

38Ca!38mK 5327.49(14)rad(36)shape(98)scr(31)QEC
5328.88(31)QEC

�0.03(0)rad(1)shape(2)scr
42Ti!42Sc 7124.3(57)rad(8)shape(14)scr(14)QEC

7130.1(14)QEC
�0.08(8)rad(1)shape(2)scr

50Fe!50Mn 15053(18)rad(3)shape(3)scr(60)QEC
15060(60)QEC

�0.04(12)rad(2)shape(2)scr
54Ni!54Co 21137(3)rad(1)shape(5)scr(52)QEC

21137(57)QEC
+0.00(2)rad(0)shape(2)scr

26mAl!26Mg 478.097(60)rad(54)shape(82)scr(100)QEC
478.270(98)QEC

�0.04(1)rad(1)shape(2)scr
34Cl!34S 1995.076(81)rad(103)shape(364)scr(94)QEC

1996.003(96)QEC
�0.05(0)rad(1)shape(2)scr

38mK!38Ar 3296.32(8)rad(21)shape(63)scr(15)QEC
3297.39(15)QEC

�0.03(0)rad(1)shape(2)scr
42Sc!42Ca 4468.53(336)rad(52)shape(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)rad(1)shape(2)scr

50Mn!50Cr 10737.93(1150)rad(202)shape(229)scr(50)QEC
10745.99(49)QEC

�0.08(11)rad(2)shape(2)scr
54Co!54Fe 15769.4(23)rad(7)shape(34)scr(27)QEC

15766.8(27)QEC
+0.02(1)rad(0)shape(2)scr

74Rb!74Kr 47326(127)rad(18)shape(12)scr(94)QEC
47281(93)QEC

+0.10(27)rad(4)shape(3)scr

Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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theless, according to Eq.(3), a coherent downward shift



19

Isospin symmetry + Charge Radii in isotripletT = 1, O+

Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to

8 Gorchtein, Seng

Above treatment assumes isospin symmetry — but we know that it is slightly broken! 
Why isospin symmetry assumption is good enough? 

Shape factor and finite size effects are ~small corrections to Fermi function 
1-2% ISB effect on top of a RC may be assumed negligible (but needs to be tested)

Test requires that all 3 nuclear radii in the isotriplet are known; 
Currently only the case for A=38 system

ISB-sensitive combination (more on that later)

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

= 0 if isospin symmetry exact

1
2 (20 × 3.467(1)2 + 18 × 3.4028(19)2) − 19 × 3.437(4)2 = − 0.00(12)(14)(52)

Improvement of K-38m radius necessary! (Plans at TRIUMF on IS K-38m, K-37?)



Isospin breaking in nuclear WF:  
Tree-level effect — ISB “large”

δC

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ

MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS



Isospin symmetry breaking in superallowed -decayβ
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MF = ⟨ f |τ+ | i⟩

Tree-level	Fermi	matrix	element

	—	Isospin	operator	
	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩

If	isospin	symmetry	were	exact,	 	

Isospin	symmetry	is	broken	in	nuclear	states		
(e.g.	Coulomb,	nucleon	mass	difference,	…)	

In	presence	of	isospin	symmetry	breaking	(ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)
MacDonald	1958
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δC ∼ 0.17% − 1.6%!

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

ISB	correcCon	almost	singlehandedly	aligns	!-values!	

Crucial	for	 	extracConVud
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Nuclear Corrections vs. scalar BSM

Once	all	correcCons	are	included:	
CVC	—>	Ft	constant

Fit	to	14	transiCons:			
Ft	constant	within	0.02%

SUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide

10C 14O 26mAl 34Cl 38mK 42Sc 46V 50Mn 54Co

0.02

0.10

0.08

0.06

0.04

0

0.14

0.12
Q-value

Half-life

Branching ratio

R
’

C NS-

Parent nucleus

)
%( ytniatrecnu lanoitcarF

FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.

62Ga 74Rb70Br66As
0

0.2

0.4

0.3

0.1

T = 0Z

Parent nucleus

T = -1Z

Q-value

Half-life

Branching ratio

’

-

18Ne 42Ti38Ca34Ar30S26Si22Mg
0

0.2

0.4

0.3

0.1
)

%( ytniatrecnu lanoitcarF

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud | from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.

025501-20

If	BSM	scalar	currents	present:	Fierz	interference	bF

ℱtSM → ℱtSM (1 + bF
me

⟨Ee⟩ )
with	Z	—>	effect	of	 	with	Z	

Introduces	nonlinearity	in	the	Ft	plot	

	~	consistent	with	0

QEC ↑ bF ↓

bF = − 0.0028(26)

Hardy,	Towner	2020
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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Previously guessed Rc(26mAl) = 3.040(20) fm

Charge radii serve as input parameters for corrections supreallowed beta decay rates

Recent measurement at ISOLDE

the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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Al-26m the most precisely measured transition! 
Direct impact on Ft and Vud extraction
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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IS measurement + QED & Nuclear Theory —> Radius 
  
Radius + QED & Nuclear Theory —> Ft-value

was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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Dedicated paper addressing all ingredients is in preparation  (MG, B. Ohayon, B. Sahoo, C-Y Seng) 
Stay tuned!

Many-body QED to calculate F, M factors —>  
Theory calculation up to date?   
All uncertainties under control? 

Recently revisited Skripnikov et al, 2404.13369
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see that electron correlation e↵ects are crucial for this
treatment. As can be seen from Table VI, the dominant
SE contribution to the FS constant comes from the first
term of Eq. (15), which implies a direct di↵erentiation of
the SE matrix elements. The second term, which does
not include such a derivative, contributes more than an
order of magnitude less.

As noted in section IIC, two types of QED contribu-
tions to the nuclear recoil e↵ect were considered: (i) the
e↵ect beyond the approximation given by Eq. (4), and
(ii) the change of the NMS and SMS operators expec-
tation values due to the perturbation of the electronic
wave function by the SE and VP interactions. Table VII
provides the values of the QED contribution of first type
to the normal mass shift constant kNMS calculated at the
di↵erent levels of theory: DHF, CCSD, and CCSD(T).
As in the case of the SE contribution to the FS constant,
one can see a significant role of the electron correlation
e↵ects. The related QED contribution to kSMS was esti-
mated to be about an order of magnitude smaller using
the rigorous QED treatment similar to Ref. [73]. The
QED contribution of the second type to the normal mass
shift constant kNMS was found to be smaller by about a
factor of 5.5 and of opposite sign compared to the first
contribution being about �0.2 GHz u for all the consid-
ered transitions. In addition, we found that the second-
type QED contributions to kNMS and kSMS have similar
absolute values but opposite signs, leading to a near can-
cellation of these e↵ects in the total nuclear recoil factor
kNMS + kSMS.

TABLE VII. Values of the QED contribution to the nuclear
recoil e↵ect (in GHz u) considered at di↵erent levels of theory.

Transtion DHF CCSD CCSD(T)
3s23p 2P1/2 ! 3s24s 2S1/2 0.2 1.2 1.2
3s23p 2P3/2 ! 3s24s 2S1/2 0.2 1.2 1.2
3s23p 2P1/2 ! 3s25s 2S1/2 0.1 1.1 1.1
3s23p 2P3/2 ! 3s25s 2S1/2 0.1 1.1 1.1

As one can see from Table IV, the basis set and the
Breit interaction corrections also have opposite signs and
similar absolute values for kNMS and kSMS. Thus, these
corrections nearly cancel each other in the total nuclear
recoil atomic factor. However, to be conservative, we
calculated the uncertainty of the total recoil e↵ect as the
square root of the sum of the squares of the uncertainties
for kNMS and kSMS, i.e., we did not employ this cancella-
tion. Note also that we did not find such a cancellation
for higher-order correlation e↵ects, such as the contribu-
tions of quadruple excitations.

In Ref. [9] the IS shift �⌫27,26m = 377.5(3.4) MHz
was measured for the 3s23p 2P3/2 ! 3s24s 2S1/2 tran-
sition. Using the previously calculated atomic fac-
tors F = 76.2(2.2) MHz/fm2, kMS=234(4) GHz u
[12, 95] and nucleus masses from Refs. [102, 103] the
�hr2i27,26m=0.429(45)(76) fm2 value was deduced, where
the first uncertainty is the experimental one and the sec-

TABLE VIII. Values of �hr2i27,26m (in fm2) andRc(
26mAl) (in

fm). The first uncertainty for �hr2i27,26m is the experimental
one and the second is due to the atomic factors.

�hr2i27,26m Rc(
26mAl)

Refs. [10, 11] 3.040(20)
Ref. [9] 0.429(45)(76) 3.130(15)
This work 0.443(44)(19) 3.132(10)

ond is due to the previously used atomic factors [12, 95].
With the new atomic factors we obtain from Eq. (1)

�hr2i27,26m = 0.443(44)(19) fm2. (28)

The theoretical uncertainty of �hr2i27,26m is reduced by
a factor of 4 and now the uncertainty of the deduced ms
charge radius is dominated by the experimental uncer-
tainty.

To obtain the absolute ms charge radius of 26mAl,
Rc(26mAl), the absolute ms charge radius of 27Al
is required. The latter was tabulated in Ref. [12],
Rc(27Al) =3.061(6) fm, where the experimental data
from the muonic atom spectroscopy were combined with
elastic electron scattering measurements. Using this re-
sult together with the deduced value of �hr2i27,26m (28)
we obtain the absolute rms nucleus charge radius of
26mAl:

Rc(
26mAl) = 3.132(10) fm. (29)

This value is in good agreement with the previously de-
rived value Rc(26mAl) = 3.130(15) fm [9], but 1.5 times
more accurate due to the improved accuracy of the IS
atomic factors. Now the uncertainty of the absolute rms
charge radius is dominated by the uncertainties of the
measured IS and Rc(27Al) and not by the uncertainty
of the calculated atomic factors. The �hr2i27,26m and
Rc(26mAl) are summarized in Table VIII.

By using the deduced �hr2i27,26m value together with
the computed FS and MS atomic factors, one can deter-
mine the theoretical uncertainty for the IS of the transi-
tion of interest for the 26m,27Al pair. The resulting uncer-
tainty, 0.4%, is dominated by the uncertainty of the mass
shift constant. We can estimate the nonlinear (in m/M)
mass shift e↵ect contribution to the IS for the 26m,27Al
pair by comparing the IS values calculated using Eq. (1),
i.e. the linear in m/M e↵ect, with the recoil e↵ect calcu-
lated by including the operators (4) and (5) into the elec-
tronic Hamiltonian and performing direct calculations
within the CCSD method for two masses: M(26mAl) and
M(27Al). In the latter case we obtain an estimation of
the nuclear recoil e↵ect in all orders in m/M . Accord-
ing to this calculation, the nonlinear contribution of the
nuclear recoil e↵ect was found to be 0.08% of the total
linear in m/M mass shift value, i.e. about a factor of five
smaller than the estimated nuclear-recoil-e↵ect theoret-
ical uncertainty for the considered transition (see Table
V).

QED uncertainty

Charge radius of Al-27 from Fricke, Heilig Nuclear Charge Radii compilation 2004

 13-Al  Aluminum 1 

 

Landolt-Börnstein 
New Series I/20 

13-Al  Aluminum 

Aluminum has only one stable isotope. The listed radii are from muonic atoms and elastic electron 
scattering.  
 
K X-ray or optical isotope shift measurements do not exist. 
 
13.1.3  Muonic atom data 

13.1.3.1  Muonic 2p–1s transition energy, muonic Barrett radius, and model dependent RMS-radius 

Eexp Experimental muonic atom transition energies (center of gravity of 2p–1s);  
 the error (given in parantheses) is the statistical one. 
Etheor Energy of the transition calculated using a two parameter Fermi distribution. 
t Skin thickness fixed at 2.30 fm. 
c Half-density radius fitted to reproduce the experimental transition energy. 
NPol Calculated nuclear polarization correction. 

1/2
model

2 >< r  RMS charge radius calculated from t and c, model dependent. 
Rkα Model-independent Barrett equivalent radius; the parameters k and α are fitted to the cor-

responding transition; the first error is derived from the error of the experimental transition 
energy; the second error is estimated assuming as an upper limit a 30% error for the nuclear 
polarization correction. For more details see Introduction Chapter 4. 

Cz Sensitivity factor Cz = dRkα / dE. 
 
A Eexp [keV] Etheo 

[keV] 
Npol 
[keV] 

c [fm] 1/2
model

2 >< r  
[fm] 

α 
[1/fm] 

k  Cz  
[10-3fm/eV] 

µ
kαR  [fm] Ref. 

27 346.828(2) 346.827 0.040 3.0554(4) 3.063 0.0419 2.0573 –0.196 3.9354(4;24) FHH92 

 
 
13.1.4  Elastic electron scattering results 

13.1.4.1 Root mean square nuclear charge radii 1/2
e

2 >< r  

A 1/2
e

2 >< r  [fm] Ref. 

27 3.06 ± 0.09 LB67 
 3.05 ± 0.05 FHS73 
 3.035 ± 0.040 Ro86 
 
 
13.3  References for 13-Al 

FHH92 G. Fricke, J. Herberz, T. Hennemann, G. Mallot, L.A. Schaller, L. Schellenberg, C. Piller, and 
R. Jacot-Guillarmod, Phys. Rev. C45, 80–89 (1992) Behavior of the nuclear charge radii 
systematics in the s–d shell from muonic atom measurements. 

FHS73 G. Fey, H. Frank, W. Schütz, H. Theissen, Z. Phys. 265, 401–403 (1973) Nuclear RMS charge 
radii from relative electron scattering measurements at low energies. 

LB67 R.M. Lombard, G.R. Bishop, Nucl. Phys. A101, 601–624 (1967) The scattering of high-energy 
electrons by 27Al. 

LYS74 G.C. Li, M.R. Yearian, I. Sick, Phys. Rev. C9, 1861–1867 (1974) High-momentum transfer 
electron scattering from 24Mg, 27Al, and 32S. 

Ro86 H. Roothaas, Inst. für Kernphysik, Univ. Mainz, Germany, private communication, 1986. 

Npol = 40(12) eV stem from 1970’s (review by Borie, Rinker RMP 54 (1982) 67-118) 
May be underestimated (neglected nucleon polarizability ~ 17 eV)

New value of radius affects ft-value via the shape factor — additional  shift!∼ 1σ

Impact of precise nuclear radii on Ft and Vud



Unified Formalism for  and  

Dispersion Theory of the -box

ΔV
R δNS

γW

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ

MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS
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(Generalized) nucleon/ar polarizabilities 
and 

Impact on , radii and BSM searchesVud

Virtual W or photon may polarize the nucleon/nucleus 

Short-range: perturbative QCD (model-independent) 

Long-range: hadronic and nuclear polarizabilities

Fundamental properties of nuclei/nucleon (one-boson exchange) 
related to details of strong interaction (depending on precision) 

Polarizabilities related to the entire excitation spectrum 

e−ν̄e

Ai → A* → Af
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Universal RC from dispersion relations
ImTμν

γW = … +
iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)Interference  structure functionsγW

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms

16

After some algebra (isospin decomposition, loop integration)

2-fold integral: depending on  different physical pictures dominate 

Explicit energy dependence quantifiable (earlier was neglected)

Q2



Input into dispersion integral -  dataν/ν̄
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Isospin symmetry: vector-isoscalar current related to vector-isovector current
Mixed CC-NC  SF (no data) <—> Purely CC WW SF (inclusive neutrino data)γW

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC

0.01 0.1 1 10 100
Q² (GeV²)
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M
₃(1

,Q
²)

WA25
CCFR
BEBC/GGM-PS
Regge + Born + Δ
pQCD
INT + Born + Δ

Neutrino scattering data

Shift upwards by 3  + reduction of uncertainty by factor 2σ

Seng,	MG,	Feng,	Jin,	2003.11264ΔV
R = 0.02477(24)LQCDπ+pheno

Since then: confirmed by lattice QCD

ΔV
R = 0.02439(19)LQCDn

Ma,	Feng,	MG	et	al	2308.16755
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 from dispersion relationsδNS

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p

⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms

16

NS correction reflects extraction of the free box δNS = 2[ □VA, nucl
γW − □VA, free n

γW ]

Same formulas for free neutron and nuclei; 

e−ν̄e

Ai → A* → Af

e−ν̄e

n → N* → p

Differences due to: 

Richer excitation spectrum in nuclei 

Different quantum numbers 
(spin, isospin)
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Input in the DR for the universal RC Input in the DR for the RC on a nucleus

Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to

disentangle new physics from nuclear effects *

* ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays

* ω ∼ few MeV, q ∼ 102 MeV: Neutrinoless ββ -decays

* ω ! tens MeV: Nuclear Rates for Astrophysics

* ω ∼ 102 MeV: Accelerator neutrinos, ν-nucleus scattering

2 / 23

C-Y Seng, MG, M J Ramsey-Musolf 1812.03352
MG 1812.04229; Seng, MG 2211.10214

ℱt = 3072.1(7)s δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)sHT value 2018:

New estimate:
Old estimate:

δA
NS =

2α
πNM ∫

few GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) QE
3 − F(0), B

3 ) +
2⟨E⟩

3
ν + 3q

(ν + q)3
F(−) QE

3 ]
 from DR with energy dependenceδA

NS

Nuclear structure uncertainty tripled! ℱt = (3072 ± 2)s

 from dispersion relationsδNS
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Only a warm-up calculation — complete ab-initio  necessary!δNS

Effort on light systems C-10, O-14 with modern ab-initio methods initiated 
No-Core Shell Model  with Michael Gennari, Petr Navratil, Mehdi Drissy
Green’s Function MC with Garrett King, Saori Pastore 
Coupled Clusters with Sonia Bacca, Asia Sobczyk, Gaute Hagen

e−ν̄e

Ai → A* → Af

μ

Ai → A* → Ai

μ

γ γ

Great similarity with nuclear polarization contribution in muonic atoms: 
Currently major limitation for extracting precise nuclear radii! 
Coordinated effort necessary

 and nuclear polarization in µ atomsδNS



Summary & Outlook

Great improvement in theory of SM rad. corr. in past 5 years 

Great improvement in free-n; bright future UCN , SPECT, BL3 
Meson decays: future PIONEER, Belle II, NA62, K0T0 

Barely any exp. improvement in  nuclear decays 
Nuclear uncertainties critically scrutinized - community effort 
More precise nuclear radii necessary 

Cabibbo anomaly interpretable in terms of BSM (RH and scalar) 

However: to constrain BSM need to define what is the anomaly. 
Uncertainties, uncertainties, uncertainties!
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International workshop on Electroweak Precision InterseCtions 
EPIC 2024 

September 22-27 2024, Cala Serena Beach Resort (Geremeas)

Bring together different communities: 

Particle, Nuclear, Atomic, Neutrino, Astro, GW 

Study existing synergies & elaborate new ones! 

Nuclear radii is one of focuses 

1-day pre-workshop school for PhD students 

Apply and have your students apply!
https://epic2024.ca.infn.it/
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EPIC 2024 is the first
workshop dedicated to
precision electroweak
physics, with focus on:

Ø Precision tests of the
Standard Model and
beyond with atomic
nuclei

Ø Lepton- and neutrino-
nucleus interactions

Ø Nuclear matter 
across energy scales 
and multi-messenger 
astronomy

Electroweak Physics Intersections

PRE-WORKSHOP SCHOOL
Ø One-day lectures on precision physics 

with atoms, neutrino physics, and 
nuclear EoS in the multimessenger era. 

Ø Dedicated poster session for students 
at the workshop with teaser-talk event.

International workshop on Electroweak Precision InterseCtions 
EPIC 2024 

September 22-27 2024, Cala Serena Beach Resort (Geremeas)


