LAPPD R&D at JLab

Simona Malace

Jefferson Lab

Outline

- \rightarrow Timeline of my R&D on LAPPDs
- \rightarrow Results so far
- \rightarrow What's in the works and projected results for FY24
- \rightarrow On my wish list for FY24 and beyond

Timeline of my R&D on LAPPDs: 2020-2021

Identification of single photoelectron signals on Incom Inc. LAPPD38 with a Hamamatsu maPMT as witness

window	5 mm thick borosilicate	
photocathode	potassium, sodium, antimony	
	$0.345 \ \mu \mathrm{m} \ \mathrm{thick}$	
photocathode - first MCP gap	2.8 mm created via X-spacers	
first MCP	borosilicate, 65% open area ratio	
	1.2 mm thick	
gap between first and second MCP	1.1 mm created via X-spacers	
second MCP	borosilicate, 65% open area ratio	
	1.2 mm thick	
second MCP - anode gap	6.6 mm created via X-spacers	
anode	3.8 mm borosilicate with 12 μ m thick silver strips	

Single photoelectron identification with Incom LAPPD 38 S.P. Malace (Jefferson Lab), S. Wood (Jefferson Lab) (Apr 29, 2021) Published in: JINST 16 (2021) 08, P08005 • e-Print: 2104.14597 [physics.ins-det]

Timeline of my R&D on LAPPDs: 2021-2022

LDRD Funding awarded for FY22 for LAPPD studies to S. Malace:

→ A new LAPPD with good quantum efficiency, uniform gain across the MCP area and optimized distance between MCP2-anode (3 mm instead of 6.6) was fabricated by Incom Inc. specifically for my tests

LAPPD 159 Operating Performance (ROP = Recommended Operating Point)

\rightarrow The s	Parameter	Performance		
-	Photocathode Quantum efficiency @ 365 nm	Mean QE (@365 nm) = 27.8%, Maximum: 30.3%		
\rightarrow The sr	Photocathode QE Spatial Variability (σ)	0.89%	က္ရွိ ice of the	
	ROP Voltages	400V shove spode 200V between MCRs 900V/MC		
	Please Note Dark rates vs. MCP and photocathode voltage section	nominal, 100V on photocathode		
	LAPPD Gain @ ROP	3.40x10 ⁶	les	
\rightarrow An att	LAPPD Gain @ 10V on Photocathode, 900/1000 V MCP	8.14×10 ⁶		
→ Poten [.]	LAPPD Dark Count rate @ ROP (threshold = 4mV)	363.3 Hz/cm² at a threshold _م و ^w gain (134 fC), 900 V/MCP nominal, 50 V or <u>مرو</u> د cathode ^A		
-	Dark Rate @ 10 V on PC, 950V MCP	624.4 Hz/cm ²		
-	Optimal Transit Time Variation (single P/E)	70.6 ps		
-	Note: INCOM TTS results are "Provisional". Work recently done at INFN Bologna Italy shows that Incom reported TTS			
	understate the true timing capability of LAPPD. Efforts at Incom are now focused on resolving calibration issues and			
	other factors that can introduce jitter into the TTS result.			

Results on LAPPD 38: 2022 – Test Setup

LAPPD 38 with a mask that allows LED light on photocathode through a 2 mm hole 320ns Δ: 400μV @: 1.20mV 4:

20.0mVQ Ch4 500mVQ

M 200ns A Ch4 J 10.0mV

72.00 %

 Trigger: pulse that drives LED
 LAPPD pulse

LAPPD 38

(unamplified)

FADC250 sampling window (samples every 4 ns)

2022 – Identification of SPE Signal on LAPPD 38

 \rightarrow Each distribution of charge integral corresponds to a fixed LED voltage and a fixed number of triggers

→ Therefore comparing distributions means comparing probabilities for producing a certain number of photoelectrons

Definition of pulse integral from the FADC250 samples per trigger (or , event)

- \rightarrow The FADC is sampling every 4 ns, the dynamical range is set to 1 V
- ightarrow The FADC thresholds are set to 20 channels above pedestal
- → The pedestal is calculated as the average of the previous 4 samples once a sample registers above threshold
- → The pulse is defined as the first 28 samples above threshold once a sample registers above threshold

run_1962_fadc_13_channel_10_samples_for_ev_1993.dat

2022 – Identification of SPE Signal on LAPPD 38

sample registers above threshold

In the Works 2023-2024 – Precision System to Illuminate the LAPPD

T-slot extrusion stage, single carriage, belt-driven, 300 mm travel

nort of the LC40 Center

CG01T

Engineering support from JLab: Pablo Campero Rojas and Marc McMullen

	LC40G0350 part of the LC40 Gantry 1	T-slot extrusion stage, single carriage, passive guide, 350 mm travel
-	MMS23-E08P1T3A part of the LC40 Gantry 1	Stepper motor with encoder, home sensor, NEMA 23, for LC40B guides
-	X-MCC2-KX14B part of the LC40 Gantry 1	Universal drive controller, 2 axis, with IO, up to 6 A per phase Included items: 1 x X-MCC2 1 x PS14S-48V37 1 x U-DC06 1 x X-DC02
-	K0068 part of the <u>LC40 Gantry 1</u>	Kit Included items:
	AB188 part of the <u>LC40 Gantry 1</u>	LC40B Mounting Clamps, Set of 2
	AC183 part of the <u>LC40 Gantry 1</u>	LC40B Coupling, for 8 mm Shaft
-	AP187 part of the <u>LC40 Gantry 1</u>	Limit Sensor Mount for LC40 Series
	AP237 part of the <u>LC40 Gantry 1</u>	LC40 Gantry Cable Guide Support, X-Axis, Active
-	AP239 part of the LC40 Gantry 1	LC40 Gantry Cable Guide Support, X & Y-Axis, Fixed, Inverted
-	CG01 part of the <u>LC40 Gantry 1</u>	Cable Guide, 30 mm Width, 38 mm Bend Radius, Single Link
-		

Cable Guide Termination Set, Series 09, 30 mm Width

The per-axis accuracy of <u>LC40B0300-KM02</u> is 400 μ m, the repeatability is <20 μ m, and the minimum incremental move will be 35 μ m-70 μ m

In the Works 2023-2024 – Precision System to Illuminate the LAPPD

2023-present: assembled and almost done calibrating the illumination system

In the Works 2023-2024 – Precision System to Illuminate the LAPPD

2023-present: assembled and almost done calibrating the illumination system

1 mm quartz fiber

In the Works 2023-2024 – Faster Digitizer Than FADC250 \rightarrow CAEN V1742

Sampling at 250 MS/s (one sample every 4 ns) it's not enough when dealing with tens of ps rise time signals

DAQ support: Steve Wood

Channels	Impedance	Connector	
 32 channels 2 special channel (TRO, TR1) Single ended Bandwidth 500 Mhz Absolute max analog input voltage 3Vpp (with Vrail max +3V or -3V) for any 	 Z_{in} = 50 Ω DC Offset Programmable 16-bit DAC for DC offset adjustment on each channel. Range ± 1 V 	 MCX Full Scale Range (FSR) 1 V_{pp} 	
DAC offset in single ended configuration			
Resolution	Switched Capacitor Array	Sampling Rate	
• 12 bits Dead Time (A/D Conversion)	• Domino Ring Sampler chip (DRS4), 8+1 channels with 1024 storage cells each	 5 GS/s - 2.5 GS/s - 1 GS/s - 0.75 GS/s SW selectable, simultaneously on each channel 	
 10 µs, analog inputs only 181 µs, digitizing TRO and TR1 			

Sampling at a max of 5 GS/s (one sample every 0.2 ns)

→ NOT based on a flash ADC, but on switched capacitor design. 1024 capacitors perform the A-to-D conversion one after another. When these conversions are complete the information must be read out before the capacitors can be re-armed and prepared to accept more data

→ Inherent dead time of ~180 microseconds and a limitation between ~5.5 KHz and 9KHz trigger rate

- I have 2 V1742 modules, one is in my test setup already
- The libraries and rol have been written (Steve Wood)
- We sampled maPMT pulses

In the Works 2023-2024 – Faster Digitizer Than FADC250 \rightarrow CAEN V1742

What's in the Works – A Faster Digitizer Than FADC250 \rightarrow AARDVARC V3

blocks: GPU, green blocks: Serial interface

Current Specs

10-13 GSa/s
> 1GHz
32k Sa
4
1.2V/0.3-0.9V
12
<5ps
130 nm CMOS
80mW/ch

→ I got a AARDVARC V3 from NALU; I need to download the software NaluScope: "easy-to-use application designed to control and read from Nalu hardware"

→ I plan to use both digitizers and compare results obtained with both occasionally

The channel density for AARDVARC is smaller than for the V1742 so I will be using the V1742 for digitizing for most of my bench tests.

Projected Results for FY24: To Be Done

- Characterize the new LAPPD: LAPPD 159
- ightarrow Gain vs MCP and Photocathode voltages
- \rightarrow Gain vs trigger rate curves
- \rightarrow Dark rates
- \rightarrow Measure cross talk
- → Tests with comic muons (Cherenkov light in C4F8): VTP trigger with calorimeter and scintillators

What Else is in the Works – Magnetic Field Tests at JLab?

→ Starting point: a magnet that will fit in a large dark box and will reach at least 1 T field; the LAPPD would be inserted between the 2 coils

Magnet design support: Jay Benesch (JLab) December 2023: met with JLab management & engineering to discuss the possibility of building a magnetic field test setup at JLab; I was advised to write a proposal and find others that might be interested in having a high-filed, large bore magnet at JLab for B-field studies of large-size photosensors and other detectors (please e-mail <u>simona@ilab.org</u> if you could make use of such setup)

Summary

 \rightarrow Illumination system for LAPPD test installed and calibration almost done

 \rightarrow V1742 integrated in test setup and ready to digitize LAPPD pulses

 \rightarrow AARDVARC V3 unit available; need to download software and try it

 \rightarrow In the works a proposal for a mini-facility at Jlab for magnetic filed tests of photosensors and other detectors