Trace anomaly form factors from Lattice QCD

Fangcheng He

Collaborators: B. Wang, G. Wang, J. Liang, T. Draper, K. Liu and Y. Yang

arXiv:2401.0549

Introduction to QCD trace anomaly

- The lattice calculations of gluon trace anomaly
 - Trace anomaly in the forward limit
 - Gluon trace anomaly FFs
- Summary

Outline

F. He, P. Sun and Y. Yang, PRD104(2021)

Bigeng Wang, F. He, et. al , 2401.0549

Proton mass and sigma term

• Proton mass vs quark mass

$$M_P = 938 MeV$$

QCD energy momentum tensor

$m_d = 4.73(12)MeV$ $m_u = 2.08(09)MeV$

The contribution of sigma term to proton mass

Sigma term contributes to proton mass

 $H_{m,u+d} = 45.9(7.4)(2.8)MeV$

The sigma terms of light quark contribute less than 100MeV to proton mass

Y.B. Yang et,al.(χ QCD Collaboration)PRD(2016),054503

Where is the rest mass from?

Scalar transformation and trace anomaly

• Scale transformation(dilatations):

 $x \to x e^{\sigma}$

 Mass term breaks down the scale symmetry (Classical case) ∂_{μ} J_{μ} :Norther current

Scale symmetry is broken when quantum corrections are included Peskin and Schroeder, An Introduction to QFT, Chapter 19

$$(T^{\mu}_{\mu})^{a} = \frac{\beta}{2g}F^{2} + \gamma_{m}m_{q}\bar{q}q$$

 β : QCD beta function γ_m : Anomalous dimension of quark mass

Total trace term of QCD EMT

 $(T^{\mu}_{\mu}) = (T^{\mu}_{\mu})^a + m_q \bar{q}q$

$$\phi(x) \to e^{-D\sigma}\phi(xe^{-\sigma})$$

$$J^{\mu} = T^{\mu}_{\mu} = m_q \bar{q} q$$

M. Shifman, et.al., PLB 78 (1978) 443

$$=\frac{\beta_{QCD}}{2g}F^2 + (1+\gamma_m)m_q\bar{q}q = M$$
5/17

$$g \to g + \sigma \beta(g)$$
$$m \to m - \sigma m \gamma_m$$

R. J. Crewther, PRL28(1972) 1421 M. S. Chanowitz PLB40(1972) 397 J.Collins et,al. PRD16(1977) 438 N. K. Nielsen, NPB120 (1977) 212

Introduction to QCD trace anomaly

- The lattice calculations of gluon trace anomaly

 - Gluon trace anomaly FFs
- Summary

Outline

• Trace anomaly in the forward limit F. He, P. Sun and Y. Yang, PRD104(2021)

Bigeng Wang, F. He, et. al , 2401.0549

Verification of mass sum rule

• Sum rule:

$$M_{H} = \langle T^{\mu}_{\mu} \rangle_{H} = \langle m_{q} \bar{q} q \rangle_{H} + \gamma_{m} \langle m_{q} \bar{q} q \rangle_{H} + \frac{\beta}{2g} \langle F^{2} \rangle_{H}$$

Determination of γ_m and β $M_{PS} - (1 + \gamma_m)\langle H_m \rangle_{PS} - \frac{\beta}{2g}\langle F^2 \rangle_{PS}|_{m_v=0.5GeV} = 0,$ $M_V - (1 + \gamma_m)\langle H_m \rangle_V - \frac{\beta}{2g}\langle F^2 \rangle_V|_{m_v=0.5GeV} = 0,$ $M_V = 0,$ M

$$\gamma_m = 0.38(3) \quad \frac{\beta}{g^3} = -0.057$$

The ratios R_H are consistent with one within the uncertainty for the different hadron states and different quark mass.

Chiral behavior of trace anomaly in different hadron

 The total trace anomaly in different hadron with different quark (pion) mass \boldsymbol{O}

$$\langle H^a \rangle_H = \gamma_m \langle m_q \bar{q} q \rangle_H + \frac{\beta}{2g} \langle F^2 q \rangle_H$$

nucleon state.

Chiral behaviour

Gluon trace anomaly

1. The gluon trace anomaly in the pseudoscalar meson is always much smaller than that in the other hadrons, especially around the chiral limit. 2. The ratio of gluon trace anomaly to total hadron mass in pseudoscalar meson is also smaller.

Introduction to QCD trace anomaly

- The lattice calculations of gluon trace anomaly
 - Trace anomaly in the forward limit
 - Gluon trace anomaly FFs
- Summary

Outline

F. He, P. Sun and Y. Yang, PRD104(2021)

Bigeng Wang, F. He, et. al , 2401.0549

Pion and nucleon gravitational form factors

The definition of gravitational form factors **Nucleon GFFs**

$$\begin{split} \langle N(p)'|T_{g,q}^{\mu\nu}|N(p)\rangle &= \bar{u}(p') \begin{bmatrix} A_{g,q}^{N}(t)\gamma^{(\mu}P^{\nu)} + B_{g,q}^{N}\frac{i\,P^{(\mu}\sigma^{\nu)\alpha}}{2m_{N}} + D_{g,q}^{N}(t)\frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{4m_{N}} + \bar{C}_{g,q}^{N}m_{N}g^{\mu\nu} \end{bmatrix} u(p) \\ & \text{Pion GFFs} & \text{Sum rule for spin} \quad J_{q,g} = \frac{1}{2} \left[A_{q,g}(0) + B_{q,g}(0) + B_{$$

Scalar

$$\langle \pi(p)' | T_g^{\mu\mu} | \pi(p) \rangle = G_g^{\pi}(t)$$

X. Ji, PRL78 (1997) 610

Experimental measures about gluon trace anomaly FF

Detect gluon GFFs through measuring the differential cross section of J/psi photo-production process

V. Novikov, M. A. Shifman, Z. Phys. C 8(1981) D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, EPJC9 D. Kharzeev, PRD 104(2021)5

Gluon trace anomaly form factor of pion

Lattice result

Bigeng Wang, F. He, et. al, 2401.0549

 $\frac{Q^2}{2m_\pi^2}$ $G_{\pi}^{g} \approx G_{a}^{g} \approx \frac{1}{2}$ **ChPT** prediction

PQCD prediction

X. Tong, J. Ma and F. Yuan , JHEP 10 (2022) 046

The Sign change also has been observed in perturbative calculation

Gluon trace anomaly form factor of proton

Lattice result

Bigeng Wang, F. He, et. al , 2401.0549

Need to verify the sign change at large t on Lattice

14/17

Mass radius

$$\begin{split} \frac{1}{g(Q^2)} |_{Q=0} \\ \langle r_g^2 \rangle_{\pi} &= a_{\pi}/m_{\pi}^2 + b_{\pi} + c_{\pi} \log\left(\frac{m_{\pi}^2}{m_{\pi,\text{phy}}^2}\right) + d_{\pi}m_{\pi}^2, \\ \langle r_g^2 \rangle_{\pi}^{\text{phy}} &= 21.5(5.2)(11.7) \text{ fm}^2 \\ \\ \textbf{ChPT prediction} \\ \langle r^2 \rangle_{\text{m}}^{\text{ChPT}}(\pi) &= \frac{3}{m_{\pi}^2}. \end{split}$$

Phenomenological extraction

Spatial distribution of gluon trace anomaly

• 2D density in the infinite momentum-frame (IMF)

pion

in the centre region of pion

Bigeng Wang, F. He, et. al , 2401.0549

 $ho_{
m H}^{
m IMF}({f r}_{ot}) = \int rac{d^2 {f \Delta}_{ot}}{(2\pi)^2} e^{-i {f \Delta}_{ot} \cdot {f r}_{ot}} \, ilde{G}_{
m H}(Q^2) \Big|_{{f P} \cdot {f \Delta} = 0}^{P_z o \infty},$

proton

 We calculate the contribution of trace anomaly to the hadron mass and find the gluon trace anomaly contributes to the most of proton mass. The contribution to pion mass tends to be zero in the chiral limit.

• The gluon trace anomaly form factor for pion becomes negative at small transfer momentum. The spatial distribution in pion is negative in the centre region.

