

universite

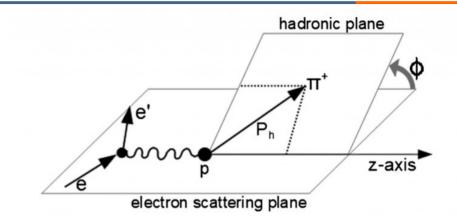
PARIS-SACLAY

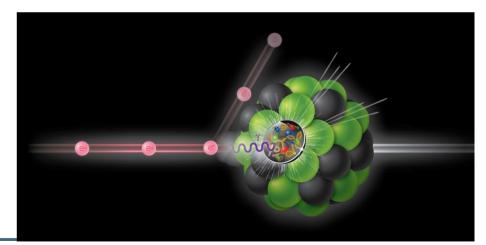
Nuclear TMD Phenomenology

Raphaël Dupré

Univ. Paris-Saclay

European Research Council Established by the European Commission


SIDIS to study cold nuclear matter

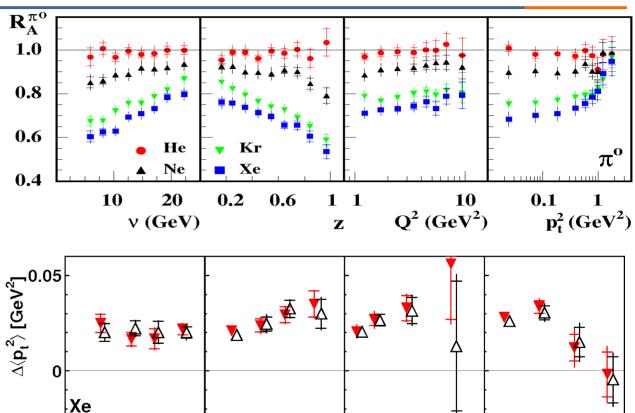

Semi-Inclusive Deeply Inelastic Scattering

- Ideal to study CNM
- Great control of the initial state
- Gives high sensitivity characterize the produced hadrons
 - Giving the longitudinal direction !

Not so used to study the CNM

- Experiments are not at high energy enough ?
- Communities not talking enough?

January 15, 2025


The HERMES data

- Several hadrons
- 6 to 22 GeV
- Both absorption and transverse momentum measured __0

There are others

 EMC and CLAS in particular

0.2

0.4

Nuclear TMD Phenomenology

 $\begin{array}{ccc} 2 & 5 \\ Q^2 \left[GeV^2 \right] \end{array}$

20

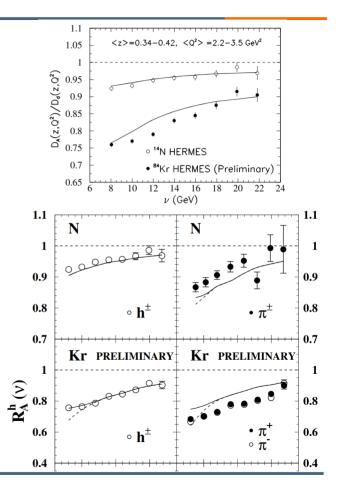
10

v [GeV]

0.5

7

The Problem


The HERMES data was thorougly studied

- Many models confronted to these data
 - I show only a couple of examples

Wang & Wang 2002, Arleo 2003 here

Matching the suppression and the transverse momentum

- That is the main issue !
- Quark energy loss calculation make a prediction on transverse momentum
 - That happen to be very hard to match to measurement
 - Often discussed but not many figures

Building of our phenomenological model

We built a TMD model

- Keeping the Gaussian assumption for simplicity
- Fitting HERMES data on proton

We added nuclear effects

- Nuclear PDF
- Fermi motion
- Quark energy loss
 - Based on Arleo 2002
- Nuclear absorption
 - Ad hoc parametrization

A TMD-based model for Hadronization off heavy nuclei F. A. Ceccopieri and R. Dupré PRC 2024

$$f_{q/P}(x_B, Q^2, \boldsymbol{k}_\perp) = f_{q/P}(x_B, Q^2) \frac{1}{\pi \langle k_\perp^2 \rangle} e^{-k_\perp^2 / \langle k_\perp^2 \rangle}$$

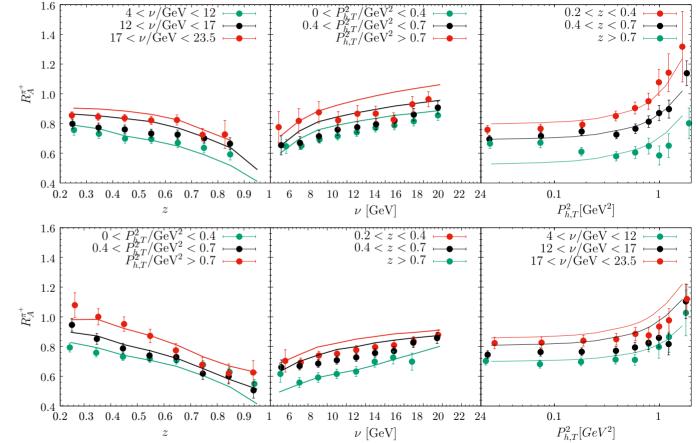
$$D_{h/q}(z,Q^2,\boldsymbol{p}_\perp) = D_{h/q}(z,Q^2) \, \frac{1}{\pi \langle p_\perp^2 \rangle} \, e^{-p_\perp^2/\langle p_\perp^2 \rangle}.$$

$$L_P(z,\nu) = N z^{\lambda} (1-z)^{\beta} \left(\frac{\nu}{\text{GeV}}\right)^{\gamma}.$$

$$\overline{W}(\bar{\epsilon},\bar{\nu}) = \frac{1}{\sqrt{2\pi}\,\sigma(\bar{\nu})\,\bar{\epsilon}}\,\exp\left[-\frac{\left(\log\bar{\epsilon}-\mu(\bar{\nu})\right)^2}{2\,\sigma(\bar{\nu})^2}\right]\,,$$

$$-\frac{dE}{dx} = \frac{\alpha_s N_C}{4} \langle q_{\perp}^2 \rangle,$$

$$n_{att}(z,\nu;x_i,b_i) = 1 - \left[\frac{L_T^* - L_P^*}{L_{typical}}\right]^d,$$



Result of the model for absorption

We get a pretty reasonable description of the HERMES data

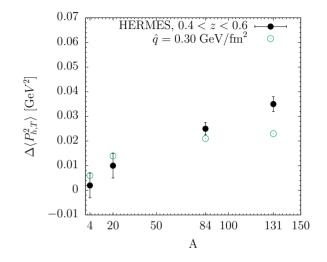
- Looks different for different binning
 - Some correlations are missing in the base (non nuclear) model

The transverse aspect looks fine from here

The Transverse momentum and parameters

The transverse mom. broadening

- Fine as well but the shape is off
 - We will come back to this

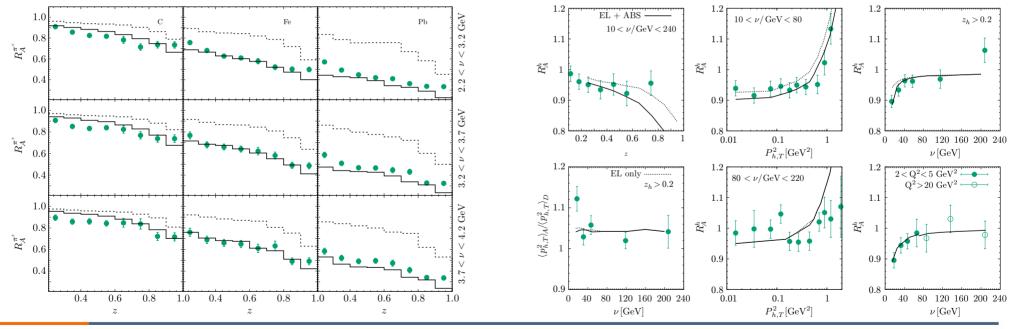

The parameters look fine

- q hat is reasonnable
- Absorption is large

The production length is strange

- Does not look like past assumptions
 - Nothing outrageous but that where the data led us

$$L_P(z,\nu) = N z^{\lambda} (1-z)^{\beta} \left(\frac{\nu}{\text{GeV}}\right)^{\gamma}.$$


Production length				
N	λ	β	γ	
4.0 fm	0.0	0.25	0.3	
Transport coefficient		Nuclear a	Nuclear absorption	
\hat{q}	α_s	$L_{typical}$	d	
$0.3\;{\rm GeV/fm^2}$	0.5	$2~{\rm fm}$	0.5	

January 15, 2025

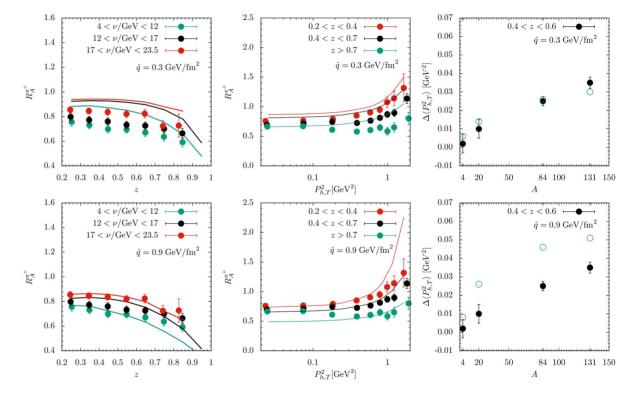
Describing more data with the model

We used the model to describe the EMC and CLAS data

- It works great (there is no transverse momentum broadening)
- Shows that at least the energy dependence of the parameters holds

Survivor Bias in Nuclear SIDIS

We found many biases

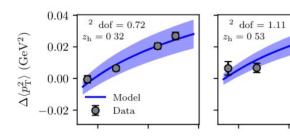

- Mostly ignored in the litterature
- But can be very large

We see an important survivor bias

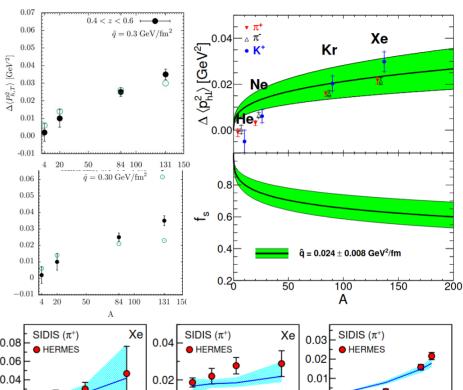
- Affects significantly the transverse momentum broadening observed
- Might resolve some of the issues past studies had

There are others

- Some are pretty convoluted
- All depend on the details of the model


The A Dependence is a Problem


This A dependence shape is a general issue


- Everybody looks similar in this regard
 - This shape is mostly driven by simple geometry
- Here I show a few exemples
- all overshoot light nuclei and undershoot heavy Song 2014, Ru 2021, Brooks 2021 (I kept the older ones out)

We notice that our model affects the shape

- We could not find a way to improve this
 - Pure energy loss does not get it right
 - And absorption always deteriorates the description

2

 Q^2 (GeV²)

January 15, 2025

Nuclear TMD Phenomenology

10/11

100

0**⊢** ā

6

10

Α

Summary and Conclusions

SIDIS data on nuclei offers a tough challenge to models

- Very constraining on parton energy loss calculations

We made a model to describe SIDIS data on nuclei

- We included the transverse momentum

January 15, 2025

- Most importantly we kept all correlations

We described the data well over a large energy range

- We found that survivor bias is very important
 - This finding might resolve many issues past studies had
 - At the same time studies trying to extract information from the data should be careful
- We found that the A dependence is not well described
 - Pure energy loss offers the better description but needs improvement

