The chiral anomaly in polarized deeply inelastic scattering: Topological screening and sphaleron transitions

Raju Venugopalan

Brookhaven National Laboratory and Stony Brook University

CFNS workshop, January 14, 2025

Interplay of perturbative and non-perturbative dynamics in polarized DIS

In the parton model, it is the net quark helicity

$$\Sigma(Q^2) = \sum_f \int_0^1 dx_B \left(\Delta q_f(x_B, Q^2) + \Delta \bar{q}_f(x_B, Q^2) \right)$$

 Δq_f = Diff. in parton densities of left and right handed quarks of flavor f $\Delta \overline{q}_f$ = Ditto for anti-quarks

Interplay of perturbative and non-perturbative dynamics in polarized DIS

In QCD, the physics is far more subtle and rich - elements include,

- The chiral anomaly and validity of QCD factorization theorems
- > Anomalous Ward identities, large N, topological screening of $\Delta\Sigma$
- Novel axion-like dynamics, and sphaleron-like transitions at small x

Worldline approach to polarized DIS: box diagram

Anti-symmetric piece of hadron tensor $\tilde{W}_{\mu\nu}(q,P,S) = \frac{2M_N}{P \cdot q} \epsilon_{\mu\nu\alpha\beta} q^{\alpha} \Big\{ S^{\beta} g_1(x_B,Q^2) + \Big[S^{\beta} - \frac{(S \cdot q)P^{\beta}}{P \cdot q} \Big] g_2(x_B,Q^2) \Big\}$ $i\tilde{W}^{\mu\nu}(q,P,S) = \frac{1}{2\pi e^2} \operatorname{Im} \int d^4x \, e^{-iqx} \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_3}{(2\pi)^4} e^{-ik_1\frac{x}{2}} e^{ik_3\frac{x}{2}} \langle P,S|\tilde{\Gamma}^{\mu\nu}_A[k_1,k_3]|P,S\rangle$

with the polarization tensor $\Gamma_A^{\mu\nu}[k_1,k_3] = \int \frac{d^4k_2}{(2\pi)^4} \int \frac{d^4k_4}{(2\pi)^4} \Gamma_A^{\mu\nu\alpha\beta}[k_1,k_3,k_2,k_4] \operatorname{Tr}_{c}(\tilde{A}_{\alpha}(k_2)\tilde{A}_{\beta}(k_4))$ Antisymmetric piece of box diagram

$$\Gamma_{A}^{\mu\nu\alpha\beta}[k_{1},k_{3},k_{2},k_{4}] \equiv -\frac{g^{2}e^{2}e_{f}^{2}}{2} \int_{0}^{\infty} \frac{dT}{T} \int \mathcal{D}x \int \mathcal{D}\psi \exp\left\{-\int_{0}^{T} d\tau \left(\frac{1}{4}\dot{x}^{2} + \frac{1}{2}\psi\cdot\dot{\psi}\right)\right\}$$

$$\times \left[V_{1}^{\mu}(k_{1})V_{3}^{\nu}(k_{3})V_{2}^{\alpha}(k_{2})V_{4}^{\beta}(k_{4}) - (\mu\leftrightarrow\nu)\right]$$
Product of boson and Grassmann worldline currents $V_{i}^{\mu}(k_{i}) \equiv \int_{0}^{T} d\tau_{i}(\dot{x}_{i}^{\mu} + 2i\psi_{i}^{\mu}k_{j}\cdot\psi_{j})e^{ik_{i}\cdot x_{i}}$

"Pert. Theory without Feynman diagrams", M. Strassler, NPB 385 (1992) 145 Review: C. Schubert, Phys. Repts. (2001)

A. Tarasov, RV, PRD (2021, 2022)

 au_4

 $\mathbf{L}_{k_1}^{k_1}$

 τ_1

Finding triangles in boxes in Bjorken and Regge asymptotics

A. Tarasov, RV, PRD (2021, 2022)

We discovered the "anomaly pole not just in its first moment but in $g_1(x,Q^2)$ itself

Very important to impose exact kinematics without making collinear or high energy approximations...

Reproduced in a Feynman diagram analysis S. Bhattacharya, Y. Hatta, W. Vogelsang, PRD (2023)

Finding triangles in boxes in Bjorken and Regge asymptotics

How does one regulate this pole? Such a pole also exists in QED but the story in QCD is much more subtle

Anomalies in the worldline formulation of QFT

Fermion action in background of scalar, pseudoscalar, vector and axial vector fields:

$$S_{\text{fermion}}[\bar{\Psi}, \Phi, \Pi, A, B, \Psi] = \int d^4x \,\bar{\Psi}^I \left[i\partial \!\!\!/ - \Phi + i\gamma^5\Pi + A + \gamma^5 B \right]^{IJ} \Psi^J$$

Effective action: $-\mathcal{W}[A, B, \Phi, \Pi] = \operatorname{Ln}\operatorname{Det}\left[\mathcal{D}\right]$ with $\mathcal{D} = p - i\Phi(x) - \gamma_5 \Pi - A - \gamma_5 B$

Split into real and imaginary parts: $\mathcal{W}_R = -\frac{1}{2} \operatorname{Ln} \left(\mathcal{D}^{\dagger} \mathcal{D} \right) \; ; \; \mathcal{W}_I = \frac{1}{2} \operatorname{Arg} \operatorname{Det} \left(\mathcal{D}^2 \right)$

Entire dynamics of the anomaly comes from W_I - the phase of the Dirac determinant

Heat kernel regularization of the phase as a worldline path integral

 W_I can also be expressed as a worldline Lagrangian of 0+1- bosonic (coordinate) and Grassmann fields

$$W_{\mathcal{I}} = -\frac{i}{32} \int_{-1}^{1} d\alpha \int_{0}^{\infty} dT \, \mathcal{N} \int_{\mathcal{PBC}} \mathcal{D}x \, \mathcal{D}\psi \, \mathrm{tr} \, \chi \bar{\omega}(0) \exp\left[-\int_{0}^{T} d\tau \mathcal{L}_{(\alpha)}(\tau)\right]$$
Worldline Lagrangian with chiral symmetry breaking interpolating parameter α

$$\mathcal{L}_{(\alpha)}(\tau) = \mathcal{L}(\tau) \Big|_{\Phi \to \alpha \Phi, B \to \alpha B} \text{ with } \mathcal{L}(\tau) = \frac{\dot{x}^{2}}{2\mathcal{E}} + \frac{1}{2}\psi\dot{\psi} - i\dot{x}^{\mu}\mathcal{A}_{\mu} + \frac{\mathcal{E}}{2}\mathcal{H}^{2} + i\mathcal{E}\psi^{\mu}\psi_{5}\mathcal{D}_{\mu}\mathcal{H} + \frac{i\mathcal{E}}{2}\psi^{\mu}\psi^{\nu}\mathcal{F}_{\mu\nu}$$
in the chiral basis $\mathcal{A}_{\mu} \equiv \begin{pmatrix} A_{\mu}^{L} & 0 \\ 0 & A_{\mu}^{R} \end{pmatrix} = \begin{pmatrix} A_{\mu} + B_{\mu} & 0 \\ 0 & A_{\mu} - B_{\mu} \end{pmatrix} \text{ and } \mathcal{H} \equiv \begin{pmatrix} 0 & iH \\ -iH^{\dagger} & 0 \end{pmatrix} = \begin{pmatrix} 0 & i\Phi + \Pi \\ -i\Phi + \Pi & 0 \end{pmatrix}$

Interesting titbit: Very analogous to problem of regularizing a chiral gauge theory – "standard model on the lattice"

D'Hoker, Gagne, hep-th/9508131, hep-th/9512080

Heat kernel regularization of the phase as a worldline path integral

 W_I can also be expressed as a worldline Lagrangian of 0+1- bosonic (coordinate) and Grassmann fields

$$W_{\mathcal{I}} = -\frac{i}{32} \int_{-1}^{1} d\alpha \int_{0}^{\infty} dT \, \mathcal{N} \int_{\mathcal{J}PBC} \mathcal{D}x \, \mathcal{D}\psi \, \operatorname{tr} \, \chi \, \bar{\omega}(0) \exp\left[-\int_{0}^{T} d\tau \mathcal{L}_{(\alpha)}(\tau)\right]$$
Worldline Lagrangian with chiral symmetry breaking interpolating parameter α

Can combine real and imaginary parts in a "perturbative" expansion

$$W = \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{D} p_{1}}{(2\pi)^{D}} \cdots \frac{d^{D} p_{n}}{(2\pi)^{D}} (2\pi)^{D} \delta^{(D)}(p_{1} + \dots + p_{n}) \int \frac{d^{D} q}{(2\pi)^{D}} \operatorname{tr} \frac{1}{\not{q} - im} \\ \times \left(i\tilde{\varphi}_{1} + \gamma_{5}\tilde{\Pi}_{1} + \tilde{\mathcal{A}}_{1} \right) \cdots \frac{1}{\not{q} - \not{p}_{1} - \dots - \not{p}_{n-1} - im} \left(i\tilde{\varphi}_{n} + \gamma_{5}\tilde{\Pi}_{n} + \tilde{\mathcal{A}}_{n} \right)$$

Quark loop with external sources

Even # of insertions belong to W_R and odd to W_I

Alvarez-Gaume, della Pietra², PLB (1986) Ball, Osborn, PLB (1986) Alvarez-Gaume, Ginsparg, Ann. Phys. (1986)

What's in a phase? WZW terms and "QCD axion" from worldline action

Likewise, expanding to O($\Phi \Pi A^2$),

$$S^{ar\eta}_{
m WZW} = -i rac{\sqrt{2 \, n_f}}{F_{ar\eta}} \int d^4 x \, ar\eta \, \Omega$$

 $\overline{\eta}$ is the primordial η', Ω the topological charge density, F_{η} the $\overline{\eta}$ decay const.

In the chiral limit, for $N_c \rightarrow \infty$, the $\bar{\eta}$ is the QCD axion

A.Bernstein, B.Holstein, RMP (2013)

The proton's quark helicity from the topology of the QCD vacuum

A remarkable result by Shore and Veneziano :

$$\Delta\Sigma = \sqrt{rac{2}{3}} \, rac{2n_f}{M_N} g_{\eta_0 N N} \sqrt{\chi'(0)}$$

Proton's quark helicity proportional to slope of QCD topological susceptibility in the forward limit

A key element in this analysis is a Goldberger-Treiman relation between axial vector and pseudoscalar form factors

Veneziano (1989) Shore, Veneziano (1990, 1992) Shore, Narison, Veneziano (1998) Also, Jaffe, Manohar (1990)

The proton's quark helicity from the topology of the QCD vacuum

A remarkable result by Shore and Veneziano:

$$\Delta \Sigma = \sqrt{\frac{2}{3}} \frac{2n_f}{M_N} g_{\eta_0 N N} \sqrt{\chi'(0)}$$

Can be understood as a primordial $\bar{\eta}$ "axion" propagating from the polarized proton, acquiring mass (Witten-Veneziano) from topological bubbles of the QCD vacuum, and coupling to J^5_{μ} through the topological charge density

Bottom line: shift anomaly pole $l^2 \rightarrow l^2 - m_{n'}^2$

Tarasov, RV 2109.10370, and in preparation

Back to DIS, quark helicity and Kogut-Susskind pole

I) Consider first the direct axial vector coupling:

Since $G_P(l^2)$ cannot have a pole for $l^2 \to 0$, $\langle P, S | J_5^{\mu} | P, S \rangle = 2M_N G_A(0) S^{\mu}$

The helicity of the proton equals its axial vector charge

$$\Delta \Sigma = G_A(0)$$

Goldberger-Treiman relation and anomaly cancelation

Topological mass generation and quark helicity

Immediate consequence is screening of topological charge by the vacuum in the chiral limit: $\chi(l^2) \rightarrow 0$ for $l^2 \rightarrow 0$

Topological mass generation and quark helicity

From previous slide,

$$egin{aligned} \sqrt{2 ilde{n}_f} \, F_{ar{\eta}} &= 2n_f \, \lim_{l o 0} i \left< 0 |T \, \Omega \eta_0 | 0
ight> , \ &= -i rac{1}{l^2} rac{\sqrt{2 ilde{n}_f}}{F_{ar{\eta}}} \chi(l^2) \end{aligned}$$

 $\propto \chi'$ for $l^2 \to 0$

Combining with the Goldberger-Treiman relation, obtain result of Shore and Veneziano

$$\Delta \Sigma(Q^2) = \sqrt{\frac{2}{3}} \, \frac{2n_f}{M_N} \, g_{\eta_0 NN} \, \sqrt{\chi'(0)}$$

Topological mass generation and quark helicity

Immediate consequence is topological screening: $\chi(l^2) \rightarrow 0$ for $l^2 \rightarrow 0$

A remarkable result by Adler (+Bardeen) is that the PVV anomaly (present for $m \neq 0$) in QED exactly cancels the AVV anomaly when $l^2 \rightarrow 0$. *Caveat emptor*, same story in pQCD – Castelli et al. (2024)

A corollary is that massless QED is not a well-defined theory

However chiral QCD is a well-defined theory and pQCD arguments are untenable. We showed that the anomaly pole is canceled by the $\bar{\eta}$ - the same physics that governs topological generation of the η' mass

What happens in QCD for finite quark mass? Quantitatively not much – but qualitatively very interesting Tarasov+RV-to appear. Spoiler alert: the chiral condensate plays a key role...

Saturation can induce over the barrier sphaleron-like transitions: $\bar{\eta}$ "axion" propagates in this "medium"

The medium does not affect the η' mass but can induce a drag McLerran,Mottola,Shaposhnikov, PRD(1991) drag coefficient is proportional to the sphaleron transition rate...

Semi-classical EFT computation: $g_1^{\text{Regge}}(x_B, Q^2) \propto \frac{Q_S^2 m_{\eta'}^2}{F_{\bar{\eta}}^3 M_N} \exp\left(-4 n_f C \frac{Q_S^2}{F_{\bar{\eta}}^2}\right) \implies \text{rapid quenching proton's spin}$

Tarasov, RV (2022)

Sphaleron transition rate in overoccupied gauge fields

Spin diffusion in topologically disordered medium

Helicity flip for massless quarks given by $N_L - N_R = n_f \nu$, where ν is the topological charge and $\Gamma_{sphaleron}^Y \propto \langle \nu^2 \rangle$

Spin diffusion in topologically disordered medium

Helicity flip for massless quarks given by $N_L - N_R = n_f \nu$, where ν is the topological charge and $\Gamma_{\text{sphaleron}}^{\text{Y}} \propto \langle \nu^2 \rangle$

Outlook

Measurements in polarized DIS sensitive to the anomaly can provide fresh insight into nonperturbative dynamics in QCD - exciting prospect of measuring sphaleron-like topological transitions

Can constrain non-perturbative models – for instance holographic models

These considerations also apply to observables sensitive to the conformal anomaly

-- In particular, so-called generalized parton distributions measured in exclusive reactions

For e.g., Bhattacharya, Hatta, Vogelsang, PRD (2023) Also, Bhattacharya, Hatta, Schoeleber (2024)

