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Introduction: Nuclear PDFs
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• The kinematic coverage of world data constraining nuclear 
Parton Distribution Functions (nPDFs) has expanded 
massively with contributions from the LHC.

• Gaps still remain in the data determining nPDFs, leaving 
large stretches of phase space un-constrained.
• We must currently rely on interpolation and miss the 

finer details of their evolution.

• The EIC will provide more coverage, but it is years away.
• It still will not extend as high in 𝑄2 as measurements 

from the LHC.
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Constraining nPDF 
effects with a clean, 

electromagnetic probe

Directly measuring 
initial-state effects from 

the hadronic probe
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pIn ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
a flux of quasi-real photons.

In p+Pb collisions, a partonic 
constituent from the proton 
strikes the Pb nucleus.

In both cases, they scatter 
from a parton in the Pb target, 
probing its nPDF.
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pIn ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
a flux of quasi-real photons.

In p+Pb collisions, a partonic 
constituent from the proton 
strikes the Pb nucleus.

In resolved processes, the 
photon can fluctuate to some 
hadronic state.

The probe in p+Pb collisions 
always has a more complex 
hadronic structure.
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• Strong evidence supports the claim there is no jet 
quenching p+Pb collisions.
• Tight constraints from ATLAS, arXiv:2206.01138

• Variation with centrality is an initial, not final state 
effect!
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This effect has been quite 
successfully described 
through a framework of 
color fluctuations.

Proton probes containing 
a high-𝑥 parton have 
smaller than average size 
(color transparency).

Color transparency makes specific predictions 
about dependence on 𝑥𝑝, not 𝑥𝑃𝑏. Dijets can 

probe this effect in unprecedented detail!
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More details available 
in poster by R. Longo
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The expected log-linear decrease with 𝑥𝑝 from 

color transparency is observed in the valence 
region.

The very strong suppression at the highest values 
of 𝑥𝑝 is also consistent with this expectation.

More details available 
in poster by R. Longo
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The expected log-linear decrease with 𝑥𝑝 from 

color transparency is observed in the valence 
region.

The very strong suppression at the highest values 
of 𝑥𝑝 is also consistent with this expectation.

The log-linear trend appears to break down in the 
low-𝑥𝑝 region

More details available 
in poster by R. Longo
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The trend with 𝑅𝐶𝑃 is much less 
consistent in 𝑥𝑃𝑏 than in 𝑥𝑝 .

More details available 
in poster by R. Longo

Suppression depends on 𝑦𝑏 and 
𝑝𝑇,𝐴𝑣𝑔 without a clear trend in 𝑥𝑃𝑏. 
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Nuclear PDFs at Low-𝑥

26

Strikman, Vogt, and White (2005)

Helenius (2018)

• Nuclear Parton Distribution Functions (nPDFs) are 
important for precision measurements of a number of 
physical observables.

• They are poorly constrained at low-𝑥 and intermediate 𝑄2 
due to a lack of available data.
• 100 GeV² <  𝑄2 < 1000 GeV² has very little constraint.
• Nuclear shadowing at low-𝑥 in this region is of 

particular theoretical interest.

• Photo-nuclear jet production provides a clean probe of this 
kinematic region, similar to DIS:
• Proposal by Strikman, Vogt, and White (2005)
• Test of sensitivity (right) by Helenius (2018)
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Gap Selections and Photon Structure
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Template fit studies of σ𝛾 ∆η provide two pieces of information:

• The efficiency and background contamination rates of different gap selections
• The relative proportion of direct and resolved events

January 14th, 2025 Ben Gilbert, LLNL
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• The selection we apply (red) maintains a 
sufficient level of signal purity.
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Gap Selections and Photon Structure
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• The selection we apply (red) maintains a 
sufficient level of signal purity.

• The direct fraction differs between data and 
theory at low 𝐻𝑇  but is modeled well at high 
𝐻𝑇 .
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A New Calibration for Jets in UPC
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• Due to the unique environment of UPCs, an entirely new jet calibration 
was derived specifically for this measurement.

• This result extends lower in jet 𝑝𝑇 than any previous ATLAS measurement.

• This coverage was made possible through the development of new 
techniques for studying the absolute energy scale at low 𝑝𝑇.

• Methodology for measuring jets in UPC is useful for the EIC program, and 
some dominant uncertainties (MC modeling) are shared!
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Systematic Uncertainties
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Systematic uncertainties 
are the key limiting factor 
in our sensitivity to 
nuclear PDFs.

The jet energy scale and 
resolution uncertainties 
are typically 5-10%.

Systematic uncertainties are 
also evaluated on the 
unfolding and event 
selections.

Full treatment of correlated 
uncertainties helps to 
provide substantially more 
information on nPDFs.
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An Aside: Nuclear Break-up
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• Our typical picture of an ultra-peripheral heavy-ion collision involves two 
nuclei with some large separation, b > 2RA.

• 𝐸𝛾 ∝ 1/𝑏 → Biases towards lower impact-parameter collisions

• Much higher probability of breakup of the photon-emitting nucleus due 
to additional EM interactions
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• Our typical picture of an ultra-peripheral heavy-ion collision involves two 
nuclei with some large separation, b > 2RA.

• 𝐸𝛾 ∝ 1/𝑏 → Biases towards lower impact-parameter collisions

• Much higher probability of breakup of the photon-emitting nucleus due 
to additional EM interactions

Theoretical modeling predicts the 
rate quite well! (arXiv:2404.09731) 

The measured breakup is used to 
correct the theory predictions when 
comparing to data.
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The 𝑥𝐴 distribution has substantial acceptance effects in 𝑧𝛾.

Selecting on photon energy removes this bias, allowing for a 
more direct measurement of nPDFs.
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The 𝑥𝐴 distribution has substantial acceptance effects in 𝑧𝛾.

Selecting on photon energy removes this bias, allowing for a 
more direct measurement of nPDFs.
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Photon Energy
3.7 × 10−4 < 𝑧𝛾 < 0.027
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• Comparing to additional nPDF fits can provide some insight for 
how well these data agree with existing predictions.

• Generally, the agreement is best with nCTEQ and TUJU.

• One should be careful not to overly interpret these results, 
especially the normalization, without an NLO comparison.

• There is a clear tension between fits with larger modifications 
(nNNPDF, EPPS) and smaller modifications (nCTEQ, TUJU), 
especially at low 𝐻𝑇.

• These tensions primarily impact the size of shadowing and anti-
shadowing effects.

• Little can be said about the EMC effect in these results, due to 
the limited coverage at high-𝑥𝐴.
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• The results from this measurement provide substantially 
improved coverage of the intermediate-𝑄2 region, for a wide 
range of 𝑥 values.

• These results are fully inclusive, and after correction for 
nuclear break-up, the measured cross-sections agree well 
with existing nPDFs using LO+PS calculations.

• With the full treatment of correlated systematic uncertainty, 
these data will have substantial constraining power for nPDFs.
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• The results from this measurement provide substantially 
improved coverage of the intermediate-𝑄2 region, for a wide 
range of 𝑥 values.

• These results are fully inclusive, and after correction for 
nuclear break-up, the measured cross-sections agree well 
with existing nPDFs using LO+PS calculations.

• With the full treatment of correlated systematic uncertainty, 
these data will have substantial constraining power for nPDFs.

• In addition to measuring a region of phase space with little 
other data, this measurement also bridges projected EIC 
coverage and LHC data.
• These data overlap in coverage with both high-𝑄2 LHC 

measurements and project EIC coverage.
• By overlapping both regions, this data can help provide both a 

baseline for DIS measurements at the EIC and a direct 
connection to other measurements at the LHC.
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Summary
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• ATLAS jet measurements provide several novel approaches to constrain 
initial-state effects in nuclear collisions.
• Dijet production in p+Pb demonstrates the impact of color 

transparency on processes with a hadronic probe.
• UPC dijet production provides a novel approach to measure nPDFs 

with high precision and much less sensitivity to initial state effects.
• These UPC jet results are a key first step in a rapidly expanding program 

of inclusive photonuclear processes at the LHC.

January 14th, 2025 Ben Gilbert, LLNL

These results already 
provide some key inputs for 

interpreting early physics 
results of the EIC!
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Acceptance and Observables: p+Pb Dijets
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• After selecting which bins to report, we can demonstrate the sensitivity to nPDF effects by comparing modified to 
un-modified cross-sections for two different models (markers).

• Experimental uncertainties are shown on the plots, to show how the measurement sensitivity compares to effect 
sizes. 
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Importance of Forward Neutrons: 0n0n Events
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For the first time, ATLAS has 
observed dijet production in UPCs 
without nuclear breakup (0n0n).

Gaps are required on both sides of 
the detector: σ ∆η > 2.0

A factor of 10 more events are 
observed in data than are predicted 
from 𝛾𝛾 → jets, estimated by Pythia or 
comparison to 𝛾𝛾 → 𝜇+𝜇− studies. 
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For the first time, ATLAS has 
observed dijet production in UPCs 
without nuclear breakup (0n0n).

Gaps are required on both sides of 
the detector: σ ∆η > 2.0

A factor of 10 more events are 
observed in data than are predicted 
from 𝛾𝛾 → jets, estimated by Pythia or 
comparison to 𝛾𝛾 → 𝜇+𝜇− studies. 

The distribution shapes are clearly different from pure 𝛾𝛾 → jets.
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Theoretical Modeling of Nuclear Breakup
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• The photon flux available through Pythia makes certain overly-simplified assumptions which we correct 
via modeling with STARlight.

We integrate over A-A impact parameter 
(b) and the impact parameter relative to 
the photon-emitting nucleus (𝑠𝐴).

Correction for the probability 
of breakup due to additional 
EM interactions Nuclear thickness function

Correction for the probability 
of breakup due to hadronic 
interactions (overlap veto)

The photon flux from Pythia uses a 
point source, so this term corrects 
for coherent nuclear emission.
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