

Dimuon production and meson structure

Cold Nuclear Matter Effects

(Stony Brook University, Jan.13-16, 2025)

Stephane Platchkov Paris-Saclay University, CEA/IRFU, France

SBU - Cold Nuclear Matter Effects

1968: first ever dimuon Drell-Yan-(Lederman) experiment

Dimuon experiments: "November revolution"

• 1974: discovery of the J/ψ both at the AGS and at SLAC

Sam Ting

Burton Richter

Nuclear effects: A-dependence

Cronin effect: suppression at small p_T, compensated with an increase at larger p_T

James Cronin

Dimuon production and meson structure

CEA - Saclay

- Dimuon production
 - \blacksquare => Drell-Yan, em process
 - => Charmonium production, strong int.

- ◆ Light meson structure
 - Absence of meson targets => data on the pion is scarce, kaon is essentially unknown
 - DY (old!) data extensively used, ... but largely insufficient

• J/ψ production \bigoplus is an additional tool for probing the pion PDFs!.

Properties of the light mesons: why?

♦ Light meson properties • Emerge from the properties of QCD: confinement, asymptotic freedom, ... Mass (MeV): 938 139 493 Radius (fm): 0.84 0.65 0.56 0.01 GeV Emergence of the hadron masses (EHM) Higgs Higgs mechanism explain only 1% of the nucleon mass 1 GeV EHM: must explain BOTH the nucleon and the pion/kaon • Meson PDFs: input for π and K needed!

Craig Roberts: "Thus, enigmatically, the properties of the massless pion are the cleanest expression of the mechanism that is responsible for almost all the visible mass in the universe."

PDFs of p, π , K: the present experimental knowledge

Pion

Hundreds of data sets

A single data set

The parton structure of the two lightest mesons is nearly unknown

Present status of pion PDFs (global fits)

Chang, Peng, SP, Sawada. PRD 107, 056008 (2023).

Valence: need improvement. Sea and gluons: nearly unknown

SBU - Cold Nuclear Matter Effects

PDFs	Drell- Yan	Direct γ prod.	J/ψ prod.	Leading neutron	Year	nPDF	Eloss	Reference	
SMRS	Yes	Yes	-	-	1992	R (x ₂)	-	Sutton et al.,	PR D45
GRV	Yes	Yes	-	-	1992	-	-	Glück et al.,	Z.Phys. C53
xFitter	Yes	Yes	-	-	2020	nCTEQ15	-	Novikov et al.,	PR D102
JAM18	Yes	-	-	Yes	2018	EPPS16	-	Barry et al.,	PRL 121
JAM21 (NLL)	Yes	-	-	Yes	2021	EPPS16	-	Barry et al.,	PRL 127

J/ψ production data are not used in global fits

What can we learn from a comparison with the J/ ψ data?

U

Main differences between DY and J/ ψ production processes

- Drell-Yan process
 - Electromagnetic process
 - Well understood (up to NNLO)
 - Sensitive to valence (+ sea...) PDFs
 - Low cross sections
- J/ψ production
 - Strong interaction
 - Sensitive to valence and gluon PDFs
 - Large cross sections (~ x30-x40 !)
 - Production mechanism?

Significant number of meson-induced J/ψ production data!

Chang, Peng, Sawada and SP, Phys.Rev. D102 (2020)

Pion-induced J/ ψ production; calculations: CEM@NLO

Available cross section data for light nuclei $(A \le 9)$

The gg fusion term (arrow) is dominant above $\sqrt{s} = 19 \text{ GeV}$

Pion-induced J/ ψ production; calculations CEM@NLO

Quite different $q\bar{q}$ and gg contributions! Data are very sensitive to the pion PDFs

Pion-induced J/ ψ production: calculations CEM@NLO

NA3: $\pi^{-} 200 \text{ GeV}$

The GG fusion term is dominant up to $x_F \simeq 0.70$

Pion-induced J/psi production;

calculations CEM@NLO

NA3, π^{-} 200 GeV

The data favors global fits with larger gluon PDFs

Data	SMRS		GRV		xFitter				JAM			
Experiment (P_{beam})	F	χ^2/ndf	F	χ^2/ndf	F	F^{*}	χ^2/ndf	χ^2/ndf^*	F	F^{*}	χ^2/ndf	χ^2/ndf^*
E672, E706 (515)	0.040	1.2	0.040	2.2	0.063	0.063	6.8	4.7	0.081	0.081	18.9	18.5
E705 (300)	0.052	2.3	0.053	1.9	0.073	0.076	3.2	1.3	0.086	0.086	16.1	15.9
NA3 (280)	0.046	1.5	0.049	2.0	0.067	0.069	5.0	3.2	0.081	0.081	10.4	10.3
NA3 (200)	0.046	2.1	0.050	2.2	0.065	0.066	5.0	1.3	0.081	0.081	7.7	7.6
WA11 (190)	0.054	5.0	0.058	7.2	0.078	0.076	19.4	6.2	0.091	0.091	73.7	72.9
NA3 (150)	0.065	1.1	0.071	1.0	0.089	0.091	2.6	1.6	0.108	0.108	3.9	3.8
E537 (125)	0.044	1.5	0.049	1.5	0.065	0.065	3.1	1.4	0.083	0.083	3.5	3.5
WA39 (39.5)	0.068	1.3	0.079	1.4	0.073	0.072	1.1	0.8	0.080	0.080	1.2	1.2

SMRS and GRV consistently provide better agreement with the data Main reason: they have larger gluon densities for x > 0.1

Pion global fits: differences

Large difference between the gluon distributions

SBU - Cold Nuclear Matter Effects

Could it be there any bias due to the use of CEM?

- X-check: use NRQCD instead (Non-Relativistic QCD), a factorization-based approach:
 - Short-distance cross section: describes the purely partonic process (pQCD)
 => well understood
 - Long-distance matrix elements (LDME): evolution to a color-neutral bound state
 - (2) => purely phenomenological
 - => LDMEs are fitted to the data

A short reminder on LDMEs (LO)

- Data used
 - p-induced J/ψ and ψ ' production (light targets)
 - π -induced J/ ψ and ψ ' production (light targets)
 - Cross section ratio of ψ ' and J/ ψ (any target)

Two free LDMEs for J/ψ (... and two for ψ ')

NRQCD fits to x_F-dependent data

Hsieh, liang, Chang, Peng, SP, Sawada, Ch.J.Ph. 73 (2021) Chang, Peng, SP, Sawada. PRD 107 (2023)

◆ Data used

• Atomic numbers < 10, both proton and pion-induced data, for both J/ ψ and ψ '

	Experiment	Beam	$P_{\text{beam}} (\text{GeV}/c)$	Target	Data	x_F	ndf	Norma. ^a	Reference
	FNAL E672, E706	π	515	Be	$\sigma^{J/\psi}$	[0.11, 0.79]	35	12.0	[82]
	FNAL E705	π	300	Li	$\sigma^{J/\psi}$	[-0.10, 0.45]	12	9.5	[83]
	CERN NA3 ^b	π	280	р	$\sigma^{J/\psi}$	[0.025, 0.825]	17	13.0	[84]
pion	CERN NA3 ^b	π	200	p	$\sigma^{J/\psi}$	[0.05, 0.75]	8	13.0	[84]
	CERN WA11 ^b	π	190	Be	$\sigma^{J/\psi}$	[-0.35, 0.75]	12	^c 10.0	[85]
164 points	CERN NA3 ^b	π	150	р	$\sigma^{J/\psi}$	[0.025, 0.925]	19	13.0	[84]
•	FNAL E537	π	125	Be	$\sigma^{J/\psi}$	[0.05, 0.95]	10	6.0	[86]
	CERN WA39 ^b	π	39.5	р	$\sigma^{J/\psi}$	[0.05, 0.85]	9	15.0	[87]
	FNAL E672, E706	π	515	Be	$\sigma^{\psi(2S)}$	[0.17, 0.73]	5	16.0	[82]
	FNAL E615	π	253	W	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.275, 0.975]	15		[88]
	HERA-B	р	920	W	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[-0.3, 0.075]	8		[78]
maton	CERN NA50	р	450	W	$\sigma^{\psi(2S)'}/\sigma^{J/\psi}$	[-0.075, 0.075]	4		[89]
proton	FNAL E789	р	800	Au	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.00, 0.12]	5		[90]
82 points	FNAL E771	р	800	Si	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.00, 0.20]	6		[91]
02 points	FNAL E705	p	300	Li	$\sigma^{J/\psi}$	[-0.10, 0.45]	12	10.1	[83]
	CERN NA3 ^b	p	200	р	$\sigma^{J/\psi}$	[0.05, 0.75]	8	13.0	[84]
	an c	. • . •	.1 .*	1					

TABLE II. Differential cross sections datasets for charmonium production $[J/\psi, \psi(2S)]$ and $R_{\psi}(x_F)$ used in the study, listed in order of decreasing beam momentum.

16 data sets, both pion- and proton-induced

Common fit to pion and proton-induced charmonium data

Proton data provide further constraint on the universal LDMEs == > Good fit on all data!

Larger gluon contribution for SMRS in comparison with JAM

Fit results for $\chi 2$

Global FIT/ Comparison	SMRS	GRV	JAM	xFitter
χ^2 total/ndf	1.9	2.4	5.6	4.2
χ2-ndp (pion)	1.8	2.4	5.9	4.5
χ2-ndp (proton)	1.6	1.7	2.7	1.9

A comment on the ψ ' fits

• $J/\psi vs \psi$ ' (Mass: 3.7 GeV vs 3.1 GeV)

Data from E706: π^- + ⁹Be at 515 GeV/c

The $q\bar{q}$ contribution in ψ ' is much larger than that in J/ ψ => The ψ ' has a stronger sensitivity to the valence PDF

x_F -dependence fit – Ratio of J/ ψ and ψ '

Ratio of J/ ψ and ψ ': comparison between the four pion PDFs

An additional strong constraint on the pion PDFs.

NRQCD fit: breakdown of CS and CO contributions

Data from E705, π^- + Li, 300 GeV

Very different CO contributions

A glimpse on the kaon PDFs

◆ Kaon-induced DY data vs recent QCD calculations

Are there additional J/ ψ production data?

NA3 and WA39: kaon and pion-induced J/ ψ production data

Kaon PDFs

Chang, Peng, Sawada and SP, Phys. Lett. B855 (2024)

Data favor Kaon/pion PDFs with larger gluon content

SBU - Cold Nuclear Matter Effects

NA3 and WA39: kaon and pion-induced J/ ψ production data

Chang, Peng, Sawada and SP, Phys. Lett. B855 (2024)

Data favor Kaon/pion PDFs with larger gluon content

SBU - Cold Nuclear Matter Effects

The importance of nuclear effects for J/ ψ and ψ ' production

Eloss calculation

Summary and Outlook

- Charmonium production:
 - complementary information on the light meson PDFs
 - Larger sets of data with high statistical accuracy
- Common NRQCD fit to p and π -induced data on both J/ ψ and ψ ' data
 - Charmonium production favors pion/kaon PDFs with larger gluon content.
- Next steps
 - Include DY and J/ψ production in a global fit of the pion PDFs
 - Further increase the amount of J/ψ data by including also data on heavy targets (mandatory condition: calculation of the E-loss effects)
- Last, but not least: new data from EIC, AMBER, JLab, etc...

Thank you!

1111

Spares

Drell-Yan

- DY data available today are nearly four decades old !
 - CERN : NA3(1983), NA10(1985);

Badier et al., Z.Phys. C18, 281 (1983). Conway et al., PRD 39, 92 (1989). $E = 200 \text{ GeV}, \pi + Pt$ 0.30 E615 0 PAIRS PRODUCED BY 0.6 0.8 0.2 Fig. 1. a π^{-200} GeV data. The data points representing as defined b NA3 curve represented we valence structure function of the pion Gained from eral $m_{\mu\mu}$ intervals. The solid line is the cross sec function as defined by (2). b The data points represent $F_{\pi}(x_2)$ as defined ected from the structure-function determination. structure function $1.6u(x_2) + 2.4d(x_2)$ for π^- . Solid curve represent the (v curves have been scaled up by a factor K = 2.33. Pion structure Table 4. Result of the fit of the pion valence structure function with the data at $\langle M_{\mu\nu}^2 \rangle = 25 \text{ GeV}^2$. The π sea and nucleon valence and sea structur The results for the pion structure function are she Fig. 12(a). The parameters corresponding to the cu Correlation Systema σ coefficients given in Table 1, column 1 and the projected va pion sea the pion structure function in Table II. The para $\pi^{-} = 150 \text{ GeV/c}$ 0.05 工0.03 $\alpha^{\pi} = 0.41$ ation makes no allowance for scale-breaking eff

The data determine only the pion valence Dervery small as shown below.

Fermilab: E537(1988), E615(1989)

Additional data used

extends kinematics to much lower x values

the pion is off-shell

q

Annihilation

Pion valence PDF: Main "global" fits available

GRV/S (NLO) 1992,1999

SMRS (NLO) 1992

Global fits produce non-consistent results : 20% difference at x = 0.5 !

• CEM NLO calculation:

 π - + Li at 300 GeV/c, Fermilab E705 data

Strong sensitivity to the gluon-gluon fusion contribution

Fitted LDMEs – Comparison with LDMEs from literature

J/ψ Authors	Reference	Year	O ₁ [³ S1] (GeV ³)	O ₈ [¹ S ₀] (10 ⁻² GeV ³)	O ₈ [³ S ₁] (10 ⁻² GeV ³)	Comment
Present work	PR D107	2023	1.16	5.60±0.16	2.59±0.23	FT experiments
Butenschoen-Kniehl	PRL 106	2011	1.32	4.50±0.72	0.31±0.09	Fit on 26 data sets
Chao, Ma et al.,	PRL 108	2012	1.16	8.90 ± 0.98	0.30±0.12	Polarization data
Gong, Wan et al.,	PRL 110	2013	1.16	9.70±0.90	-0.46±0.13	Polarization data
Bodwin, Chung et al.,	PRL 113	2014	1.32	9.90 ± 2.20	$1.10{\pm}1.00$	Tevatron and LHC data
Zhang, Sun et al.,	PRL 114	2015	1.05	$1.12 \pm ??$	1.00±0.30	From LHCb data on $\eta_{\rm c}$

$\psi(2S)$ Authors	Reference	Year	O ₁ [³ S1] (GeV ³)	O ₈ [¹ S ₀] (10 ⁻² GeV ³)	O ₈ [³ S ₁] (10 ⁻² GeV ³)	Comment
Present work	PR D107	2023	0.76	0.57 ± 0.03	1.32±0.09	FT experiments
Gong, Wan et al.,	PRL 110	2011	0.76	-0.01 ± 0.87	0.34±0.12	Polarization data
Bodwin, Chao et al.,	PR D93	2016	0.76	3.14±0.79	-0.16±0.28	Tevatron and LHC data
Butenschoen-Kniehl	PR D107	2023	0.76	0.84 ± 0.10	0.286 ± 0.01	1001 data points