

Cold Nuclear Matter effects with LHCb fixed-target

Émilie Maurice

Cold Nuclear Matter Effects: from the LHC to the EIC, 13–16 janv. 2025

Overview

1. LHCb experiment and its fixed target

2. An opportunity for QCD studies ?

3. Charm results from LHC Run 2 (SMOG)

4. The fixed-target upgrade: SMOG2

5. Soft QCD studies with SMOG

6. Conclusions

The LHCb experiment [JINST 3 (2008) S08005]

LHCb was designed for heavy flavor physics but serves now as a general purpose detector

Fully instrumented in 2 < y < 5

Excellent performance :

[Int. J. Mod Phys. A30 (2015) 1530022]

- ✓ Vertex, IP and decay time resolution
- ✓ Momentum resolution
- ✓ Particle identification
 - $\epsilon_{K \to K} \approx 95\%$, $\epsilon_{\pi \to K} \approx 5\%$
 - $\epsilon_{\mu
 ightarrow \mu}$ ≈ 97%, $\epsilon_{\pi
 ightarrow \mu}$ ≈ 1-3%
- ✓ Flexible trigger down to low-p_T
- Unique fixed-target configuration
 [JINST 9 (2014) P12005]

System for Measuring the Overlap with Gas : SMOG

Why?

Installed for beam-gas imaging Improvement of LHC luminosity determination

How?

Pumping configuration is adapted Injected **noble gas** spread out +/- 20 m around LHCb Pressure O(10⁻⁷) mbar

Fixed-target physics

- Differents colliding systems thanks to the LHC beams: proton nucleus and Pb nucleus collisions
- \Box Access to an unexplored energy range, $\sqrt{s} \approx 100$ GeV, and to a unique rapidity range y* $\in [-2.3, 0]$
- □ Forward spectrometer → LHCb is perfectly suited for studying QCD in fixed-target collisions

Emilie Maurice

Quantum Chromodynamics studies with LHCb fixed target ?

LHCb was designed to study b and c hadrons

Unique opportunity to study precisely heavy flavour production in proton-nucleus and nucleus-nucleus collisions \rightarrow

But not only: with LHCb PID performances, light flavour hadrons are also being investigated:

Polarization of Λ^+ , measurement of $\phi(1020)$ and many more to come !

Emilie Maurice

 \checkmark

 \checkmark

Charm heavy flavour program with LHCb fixed-target

Charmonia ($c\bar{c}$ bound state) production is still an open question Color Evaporation Model / Color Singlet Model / Color Octet Model / NRQCD ?

Open charm production (hadronisation) is also puzzling

Fragmentation functions are not universal Coalescence : overlap of individual parton wave functions in position and velocity space Parton density Parton Björken-x

Probe the intrinsic charm content in the nucleon

With LHCb fixed-target, unique opportunity to study extensively charm production

- 1. Study hadronization mechanims in 'simple' collisions (proton-hydrogen)
- 2. Characterize the cold nuclear matter effects with proton-nucleus collisions (from *p*D to *p*Xe)
- 3. Investigate the deconfinement with charm probes in lead-nucleus collisions

Cold Nuclear Matter effects with LHCb fixed-target

LHCb Fixed-target

Impact of the cold nuclear environment on the charm production with LHCb-FT

Initial state effects

Cronin effect

 \rightarrow Limited effect (< 20%)

Energy loss

- \rightarrow Limited effect in our current sample (<10%)
- \rightarrow But may be relevant for inverse kinematics such as PbH

Final state effects

Precise characterization of these cold nuclear matter effects is important to improve our understanding of the QCD medium and crucial to disentangle them from quark gluon plasma

Emilie Maurice

Precise characterization of charmonia melting accessible with LHCb-FT

Charmonia, $c\overline{c}$, priviledged probe of phase transition

- 1986 : Matsui and Satz predicted colour screening prevents cc binding depending on the medium energy density and the cc states dissociation temperature Phys. Lett. B, 178: 416-422, 1986
- J/ ψ production : 10% from ψ' decays, 30% from χ_c decays
- J/ ψ and ψ' suppression observed :
 - By NA38/NA50 experiments, 20GeV@SPS but limited energy density to observe a plateau for J/ψ and no capabilities to measure χ_c
 - By RHIC (200GeV) and LHC (5 TeV) experiments but the suppression is counterbalanced by the statistical recombination:
 → Nb of cc̄ pairs increased with √s

Difficult to properly interpret LHC measurements without disentangling the possible sequential suppression from the possible statistical recombination

No χ_c **measurement** (except from LHCb in *pp* and *p*Pb collisions)

A definitive observation of sequential melting would be achieved by measuring the sequential suppression mechanism fully corrected for cold nuclear matter effects

Emilie Maurice

How to fully study the $c\overline{c}$ sequential suppression with LHCb-FT?

Collisions

- Energy density scan : from *p*H to PbXe collisions
- \checkmark $\sqrt{s} \in [20; 200]$ GeV
 - Produce QGP (SPS fixed-target experiments)
 - Avoid cc̄ recombination due to large amounts of cc̄ pairs produced at high energies

Detector

- ✓ Dilepton final states reconstruction : $J/\psi \rightarrow \mu^+ \mu^-$, $\psi' \rightarrow \mu^+ \mu^-$
- ✓ Photon reconstruction : $\chi_c \rightarrow J/\psi \gamma$
- ✓ Reference (proxy of the total amount of $c\bar{c}$ pairs) Drell-Yan: very limited statistics... Open charm ? → D^0 relevant proxy

LHCb detector and its fixed-target fulfilled these requirements !

Collisions between protons and Pb beam and noble gases at $\sqrt{s}~pprox$ 100 GeV

2015-2018: SMOG data taking

From 2015, several pioneering SMOG samples:

- ✓ Inject different noble gases : He, Ne, Ar
- Exploit proton and Lead beams
- Different beam energies
- Statistically limited (only several hours of collisions)

Only 4 samples are relevant for $c\bar{c}$ studies

2015-2018: SMOG data taking

From 2015, several pioneering SMOG samples :

- ✓ Inject different noble gases : He, Ne, Ar
- Exploit proton and Lead beams
- Different beam energies
- Statistically limited (only several hours of collisions)

System	$\sqrt{s_{NN}}$	Measurement	Publication
	86.6 GeV	J/ψ and D^0 total and differential cross sections in y* and p_T	PRL 122 (2019) 132002
₽→ Ar	110.4 GeV	J/ψ and D^0 differential distributions in y* and p_T	PRL 122 (2019) 132002
	68.5 GeV	• J/ψ and ψ' cross sections and production ratio • D^0 cross section and asymmetry	EPJC 83 (2023) 625
			EPJC 83 (2023) 541
Pb → Nc	68.5 GeV	J/ψ and D^0 cross section ratio	EPJC 83 (2023) 658

Emilie Maurice

J/ψ production – Total cross-section in *p*Ne collisions

The largest SMOG sample collected during 11 days: pNe at Vs = 68.5 GeV

□ Signal studied vs y* and p_T

 \Box Total cross-section with y* in [-2.29, 0] : $\sigma_{J/\psi} = 506 \pm 8 (stat.) + 46 (syst) nb/nucleon$

Extrapolation to the whole phase space using PYTHIA8 and CT09MCS PDF set

 $\sigma(pNe \rightarrow J/\psi X) = 1013 \pm 16 \text{ (stat.)} + 83 \text{ (syst) } nb/nucleon$

Comparison to cross section measurements from other experiments shows a power law dependence on the center of mass energy

J/ψ production – Differential cross-section in pNe collisions

LO CSM, HO: LO Color Singlet Model (CSM) predictions made using the HELAC-Onia generator with CT14NLO and nCTEQ15 PDF sets [CPC 198 (2016) 238, CPC 184 (2013) 2562]

- R. Vogt predictions use the Color Evaporation Model, EPPS16 nPDFs, and include contributions from nuclear absorption and multiple scatterring [PRC 103 (2021) 035204]
- □ The data does not differentiate between predictions with or without an intrinsic charm component included

Emilie Maurice

ψ production and ratio with J/ψ in pNe collisions

□ The largest SMOG sample is still statistically limited ! Only 76 ψ ' candidates

→ Measurement of the $\psi'/J/\psi$ cross-section ratio

 $\frac{\mathcal{B}_{\psi(2S)\to\mu^+\mu^-}}{\mathcal{B}_{J/\psi\to\mu^+\mu^-}} \times \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = (1.67 \pm 0.27 \pm 0.10)\%,$

The relative production rate of ψ' to J/ψ meson in *p*Ne collisions is **consistent** with the rates measured on other nuclear targets and at other center of mass energies

Emilie Maurice

D⁰ cross-section measurement in *p*Ne collisions

 \rightarrow Reference for charmonium production: J/ψ / D⁰ measurement

→ Cross-section relevant to investigate the nucleon content, specially regarding the intrinsic charm component

 $\square \sim 25 \text{ k } D^0 \text{ and } \overline{D}^0 \text{ candidates}$ $\square \text{ Total cross-section for y* in [-2.29, 0]} \quad \sigma_{D^0}^{y^* \in [-2.29, 0]} = \frac{Y_{D^0 \to K^- \pi^+}}{\mathcal{B}_{D^0 \to K^- \pi^+} \times \varepsilon_{D^0} \times \mathcal{L}_{p\text{Ne}}} = 48.2 \pm 0.3 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \, \mu\text{b/nucleon,}$

 y* and p_T dependency
 The data does not differentiate between predictions with or without an intrinsic charm component included

Emilie Maurice

D⁰ - D⁰ asymmetry measurement in *p***Ne collisions**

Emilie Maurice

D⁰ - D⁰ asymmetry measurement in *p***Ne collisions**

Emilie Maurice

D⁰ - D⁰ asymmetry measurement in *p***Ne collisions**

→ Tendency requiring complementary measurements (including other D hadrons measurements) with larger datasets

Emilie Maurice

2018 PbNe analysis

- □ 1st statistically significant Pb-induced collisions with SMOG
- Beam configuration not optimal (small number of non-colliding bunches)
- $\Box \sqrt{s}$ identical to *p*Ne collisions
- \Box J/ ψ / D⁰ cross-section measurement in PbNe to be compared with *p*Ne

J/ψ / D⁰ vs y* or p_T

*p*Ne vs PbNe :

- No dependence on y* (within the incertainties)
- Strong dependence on p_T

Emilie Maurice

J/ψ / D⁰ vs AB

 J/ψ and D⁰ hard probes production cross sections scale AB $\rightarrow \sigma_{AB}^{D^0} = (AB) \sigma_{pp}^{D^0}$

When produced in a nucleus, J/ ψ production is suppressed. The parameter α encompasses this suppression $\rightarrow \sigma_{AB}^{J/\psi} = (AB)^{\alpha} \sigma_{pp}^{J/\psi}$

$$\frac{\sigma_{J/\psi}^{AB}}{\sigma_{D^0}^{AB}} = \frac{\sigma_{J/\psi}^{pp}}{\sigma_{D^0}^{pp}} \times (AB)^{\alpha - 1} = C \times (AB)^{\alpha - 1}.$$

Fitting J/ψ / D⁰ ratio as function of AB, we measure :

 $\alpha = 0.86 \pm 0.04$

Compatible with previous experiments measurements in similar kinematic range

 $\rightarrow J/\psi$ suppression in PbNe is compatible with normal suppression

J/ψ / D⁰ vs multiplicity

Translate multiplicity information into geometric quantities with the centrality tool, see <u>JINST 17 (2022) P05009</u> (arXiv:2111.01607)

 \rightarrow J/ ψ / D⁰ ratio as a function of binary nucleon-nucleon collisions

	Hit multiplicity	$\langle N_{\rm coll} \rangle$	$\mathrm{RMS}(N_{\mathrm{coll}})$
$p\mathbf{Ne}$		1.81	1.10
PbNe	0 - 200	3.02	0.88
	200 - 300	5.13	1.81
	300 - 446	9.09	2.87
	446 - 715	17.04	4.67
	715 - 960	32.26	6.51
	960 - 1700	71.12	20.70

 J/ψ suppression shows similar trend from *p*Ne to most central PbNe collisions

Summary of the charm exploitation of 2015-2018 SMOG samples

System	$\sqrt{s_{NN}}$	Measurement	Publication
	86.6 GeV	J/ψ and D^0 total and differential cross sections in y* and p_T	PRL 122 (2019) 132002
₽→ Ar	110.4 GeV	J/ψ and $D^0~$ differential distributions sections in y* and p_T	PRL 122 (2019) 132002
p→ Ne	68.5 GeV	 J/ψ and ψ(2S) cross sections and production ratio D⁰ cross section and asymmetry 	EPJC 83 (2023) 625
			EPJC 83 (2023) 541
РЬ → №	68.5 GeV	J/ψ and D^0 cross section ratio	EPJC 83 (2023) 658

SMOG configuration is well suited for charm production analysis, but main limitation: STATISTICS

Gas pressure

→ Increase locally the gas pressure ?

Dedicated LHCb-SMOG campaigns: only few days per year
 Special LHC filling scheme : only protons in Beam 1 (entering into LHCb) and no proton in Beam 2
 → Distinguish the beam gas interaction point from proton-proton collisions ?

LHCb upgrade

Emilie Maurice

Cold Nuclear Matter effects with LHCb fixed-target

New Vertex Locator

PLUME

UT

Magnet

SMOG2

Gas is injected into a storage cell : SMOG2

- □ [-500, -300] mm from the *pp* interaction point
 - \rightarrow Interaction point different from *pp* collisions
 - ightarrow Exploitation of all LHC bunches crossing
 - \rightarrow Simultaneous data-taking with pp

SMOG2

Gas is injected into a storage cell : SMOG2

- □ [-500, -300] mm from the *pp* interaction point
 - \rightarrow Interaction point different from *pp* collisions
 - ightarrow Exploitation of all LHC bunches crossing
 - \rightarrow Simultaneous data-taking with pp
- Physical aperture of 5 mm
 - ightarrow Local pressure will be drastically increased
- □ New LHC coating allows now the injection of non noble gases \rightarrow pH collisions for reference

Significant improvement of the performances of the LHCb fixed-target system

→ Study charm and beauty production with unprecedent precision

Emilie Maurice

2022 : a new detector

2022 : dedicated to the detector commissioning

Nov 2022 : tests of several short gas injections in SMOG2

- Hydrogen \rightarrow only 21 min
- Argon → only 18 min
 18 min of SMOG2 pAr equivalent to 18h of 2015 pAr !

Emilie Maurice

LHCb-FIGURE-2024-023

2024 : SMOG2 data taking

In addition to nominal *p*A collisions, successful *pp*_{ref} run

Charm production and upsilon analyses are ongoing !

Emilie Maurice

Summary of SMOG2 lead induced collisions

Even without optimal conditions (VELO opened, no UT), 2023 PbAr collisions

 \rightarrow Access to the most central collisions of PbAr

PbAr collisions collected with nominal condition in 2024

LHCb-FIGURE-2023-030

Fixed-target program : soft probes

Λ^0 polarization in *p*Ne collisions - JHEP 09 (2024) 082

Unexpected discovery of Λ^0 polarization in 1976 in *p*Be collisions using 300 GeV unpolarized beam Polarization value increases with increasing x_F and p_T (up to few GeV) Roughly independent of the beam energy and the atomic mass number of the colliding nuclei \rightarrow Polarization extracted from the angular coefficient of the angular distribution

ϕ production in *p*Ne collisions - arXiv:2411.09343

Study strangeness enhancement study Characterization of CNM effects in *p*Ne collisions

Theoretical predictions from the most common MC generators slightly underestimate the result in regions

Also measurements of prompt \bar{p} (PRL 121 (2018) 222001) and detached \bar{p} (EPJC83, 543 (2023) 036 \rightarrow astrophysics constraints

Conclusions

LHCb in its fixed-target mode provides a unique environment to study QCD in a variety of collision systems in an unexplored region of the phase-space

Recent measurements with Run 2 data provide unique inputs:

• $D^0 - \overline{D^0}$ production and asymmetry in *p*Ne collisions probes nuclear partonic structure and hadronization in an unexplored regime

- Charmonium production in pNe and PbNe collisions tests the presence of nuclear effects and the presence of a hot nuclear medium
- Λ^0 polarization and strangeness (ϕ) production in a mostly unexplored region !

The new gas storage target SMOG2 is a huge step forward: high statistics, H₂ and D₂ injection

Many more new analyses to come !

From 2024 : we are entering into the QCD precision era with SMOG2

Emilie Maurice