Laboratory for Nuclear Science

→ focus on recent UPC measurements

Cold Nuclear Matter Effects: from the LHC to the EIC January 13th 2025

Gian Michele Innocenti (MIT)

MIT HIG group's work was supported by US DOE-NP

Focus of this talk

LHC as a photon-hadron collider

Coherent and incoherent J/ ψ production in PbPb UPCs

Open heavy-flavor production in UPCs: \rightarrow a new tool for high-precision characterization of cold-nuclear matter • first results on photonuclear D⁰ production in PbPb collisions with CMS near and long-term prospects

Collisions of heavy-ion "bunches" at the LHC

Pb "bunch" 2

1 bunch-bunch interaction (crossing) every 50 nanoseconds → less than 1% of the collisions are "hadronic"!

The Large Hadron "Photon" Collider

\rightarrow many photon-photon or photon nucleus collisions in so-called ultraperipheral heavy-ion collisions (UPCs)

Photon-nucleus collision in UPCs:

- large flux of photons (~Z²)

highest γ-nucleon center-of-mass energy accessible

→ unique tools to study the properties of quarks and gluons in nuclei at extremely high partonic densities

Coherent J/ ψ production in PbPb UPCs

Low $p_T J/\psi$ (~50 MeV)

 Photon interacts coherently with the nucleus \rightarrow average gluon density at fixed Q²

CMS, Phys. Rev. Lett. 131 (2023) 262301

Coherent J/ ψ production in PbPb UPCs

Low $p_T J/\psi$ (~50 MeV)

 Photon interacts coherently with the nucleus \rightarrow average gluon density at fixed Q²

 \rightarrow strong suppression at high W_{vN} values (small x_{BJ}) compared to scenarios without nuclear effect (IA) \rightarrow both shadowing models (*linear evolution*) and saturation (non-linear) fail in describing the observed W_{vN} dependence

First measurement of incoherent J/ ψ in UPCs vs W_{VN}

→ Probing the local gluon density and fluctuations

First measurement of incoherent J/ ψ in UPCs vs $W_{\rm YN}$

→ Probing the local gluon density and fluctuations

Strong suppression observed at large $W_{\gamma N}$ (small x) w.r.t. no-nuclear effects predictions • CMS data "challenge" both shadowing and saturation descriptions

Incoherent/coherent J/ψ in UPCs

XBJ

 No clear W dependent observed within 40<W<400 GeV) → New high-accuracy constraints on theoretical calculations, which fail to provide a comprehensive description \rightarrow Need to "over-constrain" calculations with new probes that provide additional/complementary constraints

Open charm production in UPCs

 \rightarrow ideal probe to test the transition towards low-x nuclear matter in absence of sizable final state effects

S. Klein, R. Vogt et al: <u>Phys. Rev. C, v66, 2002</u>

Experimental strategy with CMS

 $D^0 \rightarrow K^-\pi^+$ with charged tracks in the tracker

CMS Collaboration, CMS HIN-24-003

Track η

11

Experimental strategy with CMS

Located at about 140 meters from the PbPb interaction point!

CMS Collaboration, CMS HIN-24-003

A new trigger and readout strategy for UPCs with CMS

Rate of electromagnetic processes is huge (~10MhZ) and our signal represents only a small fraction of it

Improved readout and HLT compression for increased high-rate capabilities

13

A new trigger and readout strategy for UPCs with CMS

Rate of electromagnetic processes is huge (~10MhZ) and our signal represents only a small fraction of it

Improved readout and HLT compression for increased high-rate capabilities

First triggers for low-p_T heavy-flavor and jets in UPCs with CMS using the Zero-Degree Calorimeter (ZDC) **as a trigger detector**

From a few millions (2018) to about 10 billions (2023) of UPC photonuclear events collected!

→ "a long-distance" trigger challenge!

CMS Experiment at the LHC, CERN Data recorded: 2023-Oct-10 05:24:04.000512 GMT Run / Event / LS: 374925 / 591414336 / 646

. . . .

A photonuclear dijet candidate in PbPb UPCs '23 collected with the new triggering algorithms

-1

The first D⁰ signal in UPCs!

$D^0 \rightarrow K^-\pi^+$ with charged tracks in the tracker

CMS Collaboration, CMS HIN-24-003

16

Invariant mass distributions in intervals of $D^0 p_T$ and y

 \rightarrow very clean signals extracted in nine intervals of D⁰ pT and y!

 \rightarrow statistical uncertainties around 5-7 %!

$$x_{gluon} \sim \frac{p_{T,D^0}}{\sqrt{s_{NN}}} exp(-y_{D^0}^*)$$

* with respect to the

CMS Collaboration, CMS HIN-24-003

D⁰ production peaks at negative rapidities

 \rightarrow photons (although very energetic) have on average less energy than the gluons

D⁰ production in UPC collisions vs p_T and y ($\sigma\sigma\sigma\sigma\sigma \bullet \sim \sim \sim \sim$)

The production cross section for "gluon-photon" is the y-reflected version of the "photon-nucleus" one! → for this first measurement, we have measured the two results separately and merged them

CMS Collaboration, CMS HIN-24-003

First measurement of the D⁰ photonuclear production in UPCs

Constraints on gluon nPDFs for about $10^{-3} < x < 10^{-2}$ for $20 < Q^2 < hundreds GeV^2$ from photon-nucleus collisions:

"Building" FONLL-based predictions for D^o in UPCs at the LHC

FONLL for prompt inclusive charm photoproduction \rightarrow full agreement with existing predictions for ZEUS/H1

Reweight photon flux to match those expected in UPCs

Multiply for the predicted Xn0n "survival" probability in the presence of EM dissociation (EMD)

 estimated by reweighting gen-level Pythia events by the EMD-corrected photon flux for 0nXn topologies

A. M. Stasto, GMI, Paper in preparation

21

Comparison with FONLL with EPPS21 nPDFs

• CMS D⁰ ($c \rightarrow D^0$ and $b \rightarrow D^0$) Xn0n with rapidity gap

 Light blue band: prompt FONLL predictions with scale variations • **Dotted blue band**: EPPS21Pb nPDF uncertainty only • FONLL+EPPS21nPb scaled for the probability of no-breakup (EMD)

 D^{0} 8 < p_{T} < 12 GeV: \rightarrow at higher p_T, data are overall above the central values of the predictions

A. M. Stasto, GMI, Paper in preparation

Comparison with FONLL with EPPS21 nPDFs

• CMS D⁰ (c \rightarrow D⁰ and b \rightarrow D⁰) Xn0n with rapidity gap

Light blue band: prompt FONLL predictions with scale variations
Dotted blue band: EPPS21Pb nPDF uncertainty only
FONLL+EPPS21nPb scaled for the probability of no-breakup (EMD)

D⁰ 5 < p_T < 8 GeV: →data consistent with central values of the FONLL-based predictions

Comparison with FONLL with EPPS21 nPDFs

D⁰ **2** < p_T < **5 GeV**: • x_{BJ} down to about 2 * 10⁻³ • Q² down to \approx 20-30 GeV²

→ Constraints in the saturation region at low Q^2 → At low p_T , the data/FONLL ratio is below unity.

<u>Ongoing analysis</u>: extend the measurement to $D^0 p_T = 0$

Existing analysis:

- $p_T > 2 \text{ GeV}$
- limited y range at low pT

x-Q² coverage from γN data

<u>New ongoing analysis</u> (including 2024 data)

- down to $p_T = 0$ in intervals of y
- reduced systematic uncertainty
- forward-backward ratios (substantial cancellation of systematics)

Prospects:

- diffractive heavy-flavor productions
- measurements as a function of the number of neutrons
- •

New high-quality data from the latest PbPb run (November '24)

 \rightarrow improved the performance of the ZDC detector

Processing of the '24 dataset well advanced: \rightarrow first UPC signals obtained with a new reconstruction

CMS at the LHC in Run 4 and 5 (2030–2041)

- New tracker with $|\eta| < 4$
- PID for low p_T hadrons

CMS Phase-II tracker: CMS-TDR-014 CMS: Phys. Rev. D 96, 112003 CMS: CMS-TDR-020

 \rightarrow Close to x~10⁻⁵ with $\gamma N \rightarrow c\bar{c}$ observables

Photonuclear charm and beauty production at the EIC

 \rightarrow control on the photon virtuality Q² and x

Complement and expand the ongoing UPC program at the LHC:

• Transition to low-x regime with different nuclei and tunable energy • Propagation inside the cold nuclear matter • "Timescale" of the hadronization process for heavy quarks

28

Conclusions

Ultra-peripheral heavy-ion collisions

- abundant source of γN interactions at the highest energies accessible
- access to new highly-constraining signals (e.g. UPC open-charm photoproduction)

Quantitative constraints from J/ ψ production in coherent and incoherent processes

 \rightarrow challenging both shadowing and saturation models

Conclusions

Ultra-peripheral heavy-ion collisions

- abundant source of γN interactions at the highest energies accessible
- access to new highly-constraining signals (e.g. UPC open-charm photoproduction)

Quantitative constraints from J/ ψ production in coherent and incoherent processes

 \rightarrow challenging both shadowing and saturation models

New opportunities with open heavy-flavor and jets observables:

- "fully calculable" and ready for nPDF fits, with wide reach in x, Q²
- \rightarrow developing the experimental and theoretical toolbox for a broad program at the EIC

EIC data taking will start right before LHC Run 5:

 \rightarrow maximizing the physics impacts of both programs also rely on synergies in the choices of ion species

Conclusions

Ultra-peripheral heavy-ion collisions

- abundant source of γN interactions at the highest energies accessible
- access to new highly-constraining signals (e.g. UPC open-charm photoproduction)

Quantitative constraints from J/ ψ production in coherent and incoherent processes

 \rightarrow challenging both shadowing and saturation models

New opportunities with open heavy-flavor and jets observables:

- "fully calculable" and ready for nPDF fits, with wide reach in x, Q²
- \rightarrow developing the experimental and theoretical toolbox for a broad program at the EIC

EIC data taking will start right before LHC Run 5:

 \rightarrow maximizing the physics impacts of both programs also rely on synergies in the choices of ion species

