

Recent ALICE results on cold nuclear matter effects

Minjung Kim^{1,2,3} ¹LBNL, ²UC Berkeley, ³CFNS (Stony Brook U.)

Cold Nuclear Matter Effects: From the LHC to the EIC 13. Jan. 2025 - 16. Jan. 2025 **Stony Brook**

Hard probes in heavy-ion collisions

ALI-PUB-583519

Minjung Kim **UC Berkeley**

- High momentum-transfer (high-Q2) production:

Based on considerations of the uncertainty principle and QCD factorisation, hard process expected to occur at the earliest stage of a heavy-ion collision, prior to equilibration of the QGP

Hard probes in heavy-ion collisions

ALI-PUB-588636

Minjung Kim **UC Berkeley**

Probe in medium energy loss mechanisms to characterize the QGP medium

p–A collisions

Study cold nuclear matter (CNM) effects: i.e. nuclear modification of parton distribution functions, saturation in the colour Glass Condensate (CGC) approach, multiple scattering and energy loss, breakup by comovers ...

Hard probes in heavy-ion collisions

ALI-PUB-588636

Minjung Kim **UC Berkeley**

Probe in medium energy loss mechanisms to characterize the QGP medium

p–A collisions

Study cold nuclear matter (CNM) effects: i.e. nuclear modification of parton distribution functions, saturation in the colour Glass Condensate (CGC) approach, multiple scattering and energy loss, breakup by comovers ...

Caveat: can we simply conclude

- ➡CNM effect is negligible
- Deviation from unity in Pb–Pb expected to be due to hot nuclear effects as R_{pA} is consistent with 1?

ALICE experiment in Run 2

- Central Barrel: Charged particle down to 150 MeV with particle identification:
 - Heavy flavour hadrons (charm and beauty separation)
 - Quarknoium via e+e-
 - Charged jets
- Muon System: Separate trigger mode; larger data sample w.r.t. central barrel minimum bias events
 - Heavy flavour and W/Z boson decay muon
 - Quarknoium via $\mu^+\mu^-$

Cold Nuclear Matter Effects: From the LHC to the EIC 13. Jan. 2025 - 16. Jan. 2025

ALICE experiment in Run 2

Cold Nuclear Matter Effects: From the LHC to the EIC 13. Jan. 2025 - 16. Jan. 2025

Charged jet R_{pA}

ALICE Collaboration, JHEP 05 (2024) 041 $R_{ m pPb}^{ m ch\,jet}$ ALICE, p–Pb $\sqrt{s_{_{NN}}}$ = 5.02 TeV, Δy = 0.465 1.8 Charged-particle jets, anti- $k_{\rm T}$, R = 0.2, $|\eta_{\rm int}| < 0.5$ R = 0.3 $|\eta_{\text{track}}| < 0.9$ 1.6 $p_{\rm T, track} > 0.15 \, {\rm GeV}/c$ -1.4 0.8 Data 0.6 Correlated uncertainty 0.4 Shape uncertainty 0.2 60 80 100 120 140 40 20 120 140 20 60 80 $p_{\rm T\,iet}^{\rm ch} ({\rm GeV}/c)$ $p_{\rm T\,iet}^{\rm ch}$ (GeV/c) ALI-PUB-574932

- smaller than the current precision
- Different sets of nPDF provides compatible calculations, describing measured data
- Similar conclusion obtained from inclusive b-jet

Minjung Kim **UC Berkeley**

• R_{pA} consistent with unity: possible influence of cold nuclear matter effects on the cross section is

R_{pA} independent from resolution parameter (R); NNLO correction expected to have R-dependence

Open charm hadrons R_{pA}

• The models with different CNM effects qualitatively described R_{pA} of average D meson vs. p_T

Minjung Kim **UC Berkeley**

• p_{T-I} Integrated R_{pA} of open charm meson and baryon, as well as cc-bar consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

(Indirect) open beauty hadrons R_{pA}

- p_{T-I} Integrated R_{pA} of open charm meson and baryon, as well as cc-bar consistent with unity and

Minjung Kim **UC Berkeley**

ALICE Collaboration, JHEP 07 (2023) 137

ALI-PUB-561251

with theoretical predictions including nuclear modifications of the parton distribution functions

• The models with different CNM effects qualitatively described R_{pA} of average D meson vs. p_T

$J/\psi R_{pA}$ in p-Pb collisions

ALICE Collaboration, JHEP 07 (2023) 137

ALI-PUB-561226

Influence of rapidity dependent CNM effects; compatible with models including nPDF effects • Suppression concentrated at low p_T ; captured by models including nPDF effects as well as

transport model

Minjung Kim **UC Berkeley**

ALI-PUB-561246

Excited charmonium states in p-Pb collisions

ALICE Collaboration, JHEP 07 (2020) 237

- Stronger suppression of ψ (2S) at backward rapidity; compatible at forward rapidity
- resonance \rightarrow final-state effects? If so, initiated from what?

Initial-state effects or coherent energy loss; largely independent on the specific charmonium

Closer look at open charm hadrons R_{pA}

- D-meson R_{pPb} is compatible with unity and compared to model predictions including CNM effects • Both Λ_c^+ and $\Xi_c^0 R_{pPb}$ are compatible within uncertainties
 - Models reasonably describing D-meson underestimate the data (only $\Lambda_c^+ R_{pPb}$ is described below 2 GeV/c) • Models including QGP effects also capture the trend as a function of p_{T}

Minjung Kim **UC Berkeley**

Lesson from Λ_c/D^0 ratio

ALICE Collaboration, Phys. Rev. D 108, 112003

- Ratio of p_{T} -differential production cross section of baryon and meson
 - Charm, and strange hadrons have a similar trend and are compatible within uncertainties
- Similar trend of Λ_c^+/D^0 in both pp and p–Pb collisions

Minjung Kim **UC Berkeley**

• Different momentum redistribution; Shift towards higher pT in p-Pb collisions attributed to radial flow?

Quarkonium elliptic flow in small system

• J/ψ : PbPb $v_2 \ge pPb v_2 > pp v_2 \approx 0$

Non-zero J/ψ v₂ in high multiplicity p-Pb collisions, underpredicted by theory including final-state collectivity at intermediate p_T

Minjung Kim UC Berkeley

Rapp et al., JHEP 03 (2019) 015

Quarkonium elliptic flow in small system

Numerous unexpected results in small systems at the LHC Not simple reference/control experiment for Pb-Pb collisions Probing cold nuclear matter effects or initial state effects in different ways?

Minjung Kim **UC Berkeley**

Rapp et al., JHEP 03 (2019) 015

Cold Nuclear Matter Effects: From the LHC to the EIC 13. Jan. 2025 - 16. Jan. 2025

Electroweak vector-boson production in heavy ion collisions

- Produced predominantly via a quark antiquark pair annihilation (Drell-Yan); Sensitive to parton distribution functions for up and down quarks
- Weakly interacting particles; Decay leptons insensitive to the strongly-interacting medium

ALICE Collaboration, JHEP 2009 (2020) 076

• Direct access of nPDF effects in Pb-Pb collisions and quantify the nPDF through p-Pb collisions

Minjung Kim **UC Berkeley**

ALI-PUB-584107

Cold Nuclear Matter Effects: From the LHC to the EIC 13. Jan. 2025 - 16. Jan. 2025

Connection to bulk properties in Pb-Pb collisions?

- around $1/4\pi$
- number of particles produced in the final state
- Access to degrees of freedom from a initial state (Caveat: Strong model dependent studies)

Minjung Kim **UC Berkeley**

Entropy is approximately conserved through the evolution of the QGP using hydrodynamic simulations for n/s values

The number of degrees of freedom in the initial state (or initial state entropy) should therefore be proportional to the

Imaging the nucleus with photoproduced J/ψ

- be lumpy structure than smooth nucleons

Minjung Kim **UC Berkeley**

• Large-It Incoherent production: photon interacts with single nucleon/subnucleonic structure Slope better described by models including subnucleonic degree of freedom; target likely to

Energy dependence of J/ψ photoproduction

- better in higher-x region
- Models based on saturation as well as shadowing picture describe the measurement well

Minjung Kim **UC Berkeley**

No single model describes measured cross section in full range of center of mass energy (Bjorken x) ower-x region better described with models including saturation while Glauber calculation works.

ALICE experiment in Run 4 (scheduled 2031~): FOCAL

UC Berkeley

13. Jan. 2025 - 16. Jan. 2025

Energy dependence of J/ψ photoproduction

- J/ψ rapidity coverage expected to be gluon dominated in NLO calculation

Extend kinematic coverage down to lower x is foreseen in Run 4 with ALICE FoCAL

Summary and outlook

- p-Pb collisions as control experiment for quantifying the possible CNM effects
 - Numerous observables, so-called hard probes of QGP
 - Production cross sections well agreed with nPDF based calculations but many results challenge the models only with initial state effects; unexpected collective-like behavior, suppression pattern of quarkonium,
 - Yet, the measurements not so much preferred the models including QGP effects in the market
- Explore different observables other than traditional hard probes of QGP to disentangle the initial state effects; modification of nuclear PDF, initial geometry fluctuation,....
- ALICE Run3 and Run4:
 - Increasing luminosity with better spatial resolution of tracking
 - O-O, p-Pb runs scheduled already in Run 3
 - Extended kinematic range (both Lower-x and higher-x region) expected with FoCAL in Run 4

