Jet definition in DIS

NLO calculation of jet SIDIS

Jet definition and TMD factorisation in SIDIS

Paul Caucal

SUBATECH, Nantes Université

Cold Nuclear Matter effects workshop - Stony Brook - Jan 15, 2025

with E. Iancu, A. H. Mueller, and F. Yuan (2408.03129, submitted to PRL)

Introduction ●0	TMD factorisation for SIDIS at LO	Jet definition in DIS	NLO calculation of jet SIDIS	Conclusion O
Goals and c	outline			

This talk, in a nutshell:

A small-x perspective on TMD factorisation for single-inclusive **jet** production in DIS.

- First calculation of Sudakov logs in SIDIS with jets and their dependence on the jet algorithm.
- New asymmetric jet distance measure which ensures TMD factorisation.
- Emergence of the DGLAP and CSS evolutions from the small x approach.
 ⇒ combined high-energy, CSS and DGLAP evolution within the TMD formalism.

Why is it potentially interesting for this workshop?

• Jets at moderate x are complementary probes of CNM effects. Li & Vitev, PRL (126), 2021

Fig. from Sievert, Vitev, PRD 98 (2018)

- At moderate/low $p_T \ll Q$, important to disentangle purely initial state effects ("intrinsic k_T ") from CNM effects on the final state jet evolution.
- Using suitable jet definitions should help not mixing the effects together.

Single inclusive jet production in DIS

[PC, Iancu, Mueller, Yuan, 2408.03129]

 \Rightarrow Measure **jets** in DIS events and bin in terms of P_{\perp} measured in Breit (or dipole) frame:

 $\frac{\mathrm{d}\sigma^{\textit{eA}\rightarrow\mathrm{e'+jet}+X}}{\mathrm{d}x_{\mathrm{Bj}}\mathrm{d}Q^{2}\mathrm{d}P_{\perp}}$

- ⇒ In the case of a hadron measurement, see Altinoluk, Jalilian-Marian, Marquet, 2406.08277. See also talk by J. Jalilian-Marian yesterday.
- \Rightarrow Also accesses the sea quark TMD at small x in the limit $Q^2 \gg oldsymbol{P}_{\perp}^2$.

Introduction 00	TMD factorisation for SIDIS at LO ○●○○	Jet definition in DIS	NLO calculation of jet SIDIS

Breit frame and target picture at LO

- Breit frame: head-on $\gamma^* + A$ collision. $q^{\mu} = (0, 0, 0, q_z = Q)$ See also talk by Felix Ringer on Thursday.
- Photon absorbed by the struck quark.
- Quark produced with $\boldsymbol{P}_{\perp} = \boldsymbol{0}_{\perp}$:

$$\left. \frac{\mathrm{d}\sigma^{\gamma^{\star}_{\mathrm{T}}+A
ightarrow q+X}}{\mathrm{d}^{2} \boldsymbol{P}_{\perp}}
ight|_{\mathrm{LO}} = rac{4\pi^{2} lpha_{\mathrm{em}} e_{f}^{2}}{Q^{2}} \delta^{(2)}(\boldsymbol{P}_{\perp}) x f_{q}(x)$$

• Dominated by aligned jet configurations $z = \frac{k_{
m jet} \cdot P}{P \cdot q} \sim 1.$

Introduction 00	TMD factorisation for SIDIS at LO $\circ \circ \bullet \circ$	Jet definition in DIS	NLO calculation of jet SIDIS	Conclusion O

Breit frame and target picture at LO and small x

• At small x, rise of the gluon distribution ($\lambda \sim 0.2 - 0.3$)

$$Q_s^2(x)\sim lpha_srac{xG(x,Q_s^2)}{\pi \mathcal{A}^{2/3}}\sim rac{\mathcal{A}^{1/3}}{x^{\lambda}}$$

See also talk by Farid Salazar yesterday.

• Sea quark comes from a $g \rightarrow q\bar{q}$ splitting.

See also talk by Farid Salazar yesterday.
• Sea quark comes from a
$$g \to q\bar{q}$$
 splitting.
• For $Q^2 \gg P_{\perp}^2 \gg Q_s^2$, this splitting is DGLAP-like:
 $\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^* + A \to q + X}}{\mathrm{d}^2 P_{\perp}}\Big|_{\mathrm{LO}} = \frac{8\pi^2 \alpha_{\mathrm{em}} e_f^2}{Q^2} \frac{\alpha_s}{2\pi^2} \frac{1}{P_{\perp}^2} \int_x^1 \mathrm{d}\xi P_{qg}(\xi) \frac{x}{\xi} G\left(\frac{x}{\xi}, P_{\perp}^2\right) \int_{q_z=Q}^{\gamma^*} \frac{1}{Q_z} \int_x^{\gamma_z} \mathrm{d}\xi P_{qg}(\xi) \frac{x}{\xi} G\left(\frac{x}{\xi}, P_{\perp}^2\right) \int_{q_z=Q}^{\gamma^*} \mathrm{d}\xi P_{zg}(\xi) \frac{x}{\xi} G\left(\frac{x}{\xi}, P_{\perp}^2\right) \frac{x}{\xi} \frac{x}$

• NB: a LO small x calculation achieves partial NLO accuracy in standard collinear factorization.

 P_N

Jet definition in DIS

NLO calculation of jet SIDIS $_{\rm OOOOO}$

Conclusion 0

TMD factorisation in SIDIS at LO from the dipole picture

• Longitudinal boost to the dipole frame with $q^0 \sim q_z \gg Q$: $\gamma^* \rightarrow q\bar{q}$ splitting+interaction with the "shockwave" (CGC EFT).

[Mueller (1990), Nikolaev and Zakharov (1991)]

• For $Q^2 \gg P_{\perp}^2$, Q_s^2 , the CGC result factorises in terms of the (sea) quark TMD $\times \mathcal{F}_q(x, P_{\perp}^2)$ [Marquet, Xiao, Yuan, PLB 682, 207 (2009)]

$$\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{\star}+A\to\mathrm{jet}+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\bigg|_{\mathrm{LO}} = \frac{8\pi^{2}\alpha_{\mathrm{em}}\boldsymbol{e}_{f}^{2}}{Q^{2}} \times \underbrace{\frac{N_{c}}{\pi^{2}}\int_{\boldsymbol{b}_{\perp}}\int\frac{\mathrm{d}^{2}\boldsymbol{q}_{\perp}}{(2\pi)^{2}} \mathcal{D}(\boldsymbol{x},\boldsymbol{q}_{\perp}) \left[1 - \frac{\boldsymbol{P}_{\perp}\cdot(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})}{(\boldsymbol{P}_{\perp}^{2}-(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})^{2})} \ln \frac{\boldsymbol{P}_{\perp}^{2}}{(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})^{2}}\right]}_{\mathrm{sea quark TMD}}$$

Outline of the NLO computation in the dipole picture

• NLO calculation at small x for general jet kinematics performed in [PC, Ferrand, Salazar, JHEP 05 (2024) 110]. For single hadron, see [Bergabo, Jalilian-Marian, JHEP 01 (2023) 095 (inclusive), Fucilla, Grabovsky, Li, Szymanowski, Wallon, JHEP 02 (2024) 165 (diffractive)]

For dijet, see PC, Salazar, Venugopalan, JHEP 11 (2021) 222

- High energy factorisation with collinearly improved BK/BFKL. [Altinoluk, Jalilian-Marian, Marquet, 2406.08277]
- $\bullet\,$ Consider the limit $\,Q^2 \gg P_{\perp}^2 \gg Q_s^2$ in the NLO impact factor

$$\frac{\mathrm{d}\sigma_{\mathrm{CGC}}^{\gamma^{+}_{\mathrm{T}}+\boldsymbol{A}\to\boldsymbol{q}+\boldsymbol{X}}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\bigg|_{\mathrm{NLO}}=\left.\frac{\mathrm{d}\sigma_{\mathrm{CGC}}^{\gamma^{+}_{\mathrm{T}}+\boldsymbol{A}\to\boldsymbol{q}+\boldsymbol{X}}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\right|_{\mathrm{LO}}\left[1+\alpha_{s}\mathcal{I}(\boldsymbol{P}_{\perp},\boldsymbol{Q},\boldsymbol{R},\boldsymbol{x}_{\star})\right]$$

 γ_T^*, q^μ $A. P^{\mu}$ k^{μ}_{a} 00000100000

 P_{\perp}, z

Examples of NLO diagrams

• NLO impact factor depends on the jet definition.

Jet sequential recombination algorithms

- Popular jet definitions nowadays use sequential recombination algorithms. (Unlike cone-based jet definitions)
- Example with jets in e^+e^- : JADE, k_t algorithms,...

JADE, Z.Phys.C 33 (1986), Catani, Dokshitzer, Olsson, Turnock, Webber, PLB 269, 432 (1991)

- Distance measure d_{ij} between particles *i*, *j*. Ex: $d_{ij} = M_{ij}^2/Q^2$ for JADE def.
- Sequential clustering of particles.
 - \rightarrow For each pair of particles (i,j), work out the distance d_{ik} .
 - \rightarrow Find the minimum of all d_{ij} .
 - \rightarrow If the min is $< d_{\rm cut}$, recombine *i* and *j* and repeat from step 1. Otherwise, terminate the iteration.

Conclusion

Introduction 00	TMD factorisation for SIDIS at LO	Jet definition in DIS	NLO calculation of jet SIDIS	Conclusion O
Jet definitio	ons in DIS			

- Jet definitions designed to ensure factorisation of inclusive jet cross sections in terms of universal pdf. Catani, Dokshitzer, Webber, PLB 285, 291 (1992), Webber, J. Phys. G 19, 1567 (1993)
- Longitudinally invariant "generalized- k_t " algorithms.

$$d_{ij} = \min(p_{t,i}^{2k}, p_{t,j}^{2k}) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = p_{t,i}^{2k}$$

Catani, Dokshitzer, Seymour, Webber, NPB, 406 (1993), Cacciari, Salam, Soyez, JHEP 0804:063,2008

- ⇒ Many jet analysis at HERA chose longitudinally invariant k_t algorithm in the Breit frame. Ex: α_s extraction from jet cross-sections, ZEUS, PLB 547 (2002), H1 PLB 653, 134 (2007), ...
- e^+e^- spherically invariant jet definitions in the Breit frame.

$$d_{ij} = \min(E_i^{2k}, E_j^{2k}) \frac{1 - \cos(\theta_{ij})}{1 - \cos(R)}, \quad d_{iB} = E_i^{2k}$$

⇒ Recent studies on TMD factorisation with jets in DIS at moderate x use this definition with WTA scheme.
Gutierrez-Reves, Scimemi, Waalewijn, Zoppi, PRL 121, (2018), JHEP 10, 031 (2019)

Jet definition in DIS

Known issues with previous options

- Spherically invariant jet definitions in the Breit frame are not boost invariant.
 - \Rightarrow Hard to distinguish beam remnant from backward jets.

• Longitudinally invariant jet definitions in Breit frame fail to cluster hadrons in the forward region.

Fig. from Arratia, Makris, Neill, Ringer, Sato, PRD 104 (2021)

 $\bullet\,$ Not all jet definitions ensure factorisation of the fully inclusive jet cross section.

[Catani, Dokshitzer, Webber, PLB 285, 291 (1992), Webber, J. Phys. G 19, 1567 (1993)]

• Does the same phenomenon arise for TMD factorisation?

Jet def	distance measure	dipole frame NLO clustering condition ($R\ll 1)$
LI C/A	$d_{ij}=rac{\Delta R_{ij}^2}{R^2}$	$rac{M_{ij}^2oldsymbol{z}^2}{oldsymbol{P}_1^2R^2}\leq 1$
SI C/A	$d_{ij} = rac{1-\cos(heta_{ij})}{1-\cos(R)}$ in Breit frame	$rac{ec{M_{ij}^2z^2}}{Q^2R^2}\leq 1$
new LI jet def	$d_{ij}=M_{ij}^2/(z_iz_jQ^2R^2)$	$rac{\mathcal{M}_{ij}^2}{z_i z_j Q^2 \mathcal{R}^2} \leq 1$

See also Centauro algorithm, Arratia, Makris, Neill, Ringer, Sato, PRD 104 (2021)

•
$$M_{ij}^2 = (k_i + k_j)^2$$
, $z_i = (k_i \cdot P)/(P \cdot q) = k_i^+/q^+$.

• Goal: find a jet definition which ensures TMD factorisation of the single inclusive jet cross-section.

Sudakov logarithms in the NLO impact factor

• NLO Sudakov logs $L = \ln(Q^2/P_{\perp}^2)$ depend on the jet definition! For LI C/A (or anti- k_t):

$$\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^* + A \to j + X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}} \bigg|_{\mathrm{NLO}} = \frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^* + A \to j + X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}} \bigg|_{\mathrm{LO}} \times \frac{\alpha_s C_F}{\pi} \left[-\frac{3}{4} L^2 + \left(\frac{3}{4} - \ln(R) \right) L + \mathcal{O}(1) \right]$$

while for SI C/A ($\beta = 2$) and our new jet definition ($\beta = 0$)
$$\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^* + A \to j + X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}} \bigg|_{\mathrm{NLO}} = \frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^* + A \to j + X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}} \bigg|_{\mathrm{LO}} \times \frac{\alpha_s C_F}{\pi} \left[-\frac{1}{4} L^2 + \left(\frac{3(1 - \beta/2)}{4} + \ln(R) \right) L + \mathcal{O}(1) \right]$$

• From CSS evolution of the quark TMD alone, we expect the log structure

$$\frac{\alpha_s C_F}{\pi} \left[-\frac{1}{4}L^2 + \frac{3}{4}L \right]$$

 \Rightarrow TMD factorisation implies $\beta = 0$. New LI jet definition in DIS suitable for TMD factorisation with jets.

• Sudakov DL for a jet measurement is half the DL for hadron measurement.

Introduction	TMD factorisation for SIDIS at LO	Jet definition in DIS	NLO calculation of jet SIDIS	Conclusion
00	0000	00000	00000	

Heuristic derivation of the Sudakov double log

• To DLA, Sudakov comes the virtual gluon emissions in the phase space forbidden to the real ones:

$$\mathcal{S}_{\mathrm{DL}} = -rac{lpha_{s} \mathcal{C}_{F}}{2\pi} \int_{P_{\perp}^{2}}^{Q^{2}} rac{\mathrm{d}k_{g\perp}^{2}}{k_{g\perp}^{2}} \int_{k_{g\perp}^{2}/Q^{2}}^{z_{\mathrm{max}}} rac{\mathrm{d}z_{g}}{z_{g}} \, ,$$

•
$$k_{g\perp} \gg P_{\perp}$$
 forbidden due to the constraint $P_{\perp}^2 \gg Q^2$.

- Virtual emissions are effectively cut in the UV by the hard scale Q^2 .
- Lower limit on $z_g \Leftrightarrow \tau_g \sim 1/k_g^- \gg \tau_\gamma \sim 1/q^-$: excludes gluons contributing to (collinearly improved) high energy evolution.
- $z_{\rm max}$ depends on the jet constraint \Rightarrow a real gluon is forbidden only if it is **not** in the jet.

For a hadron measurement, $z_{max} = 1$ and $S_{DL} = -\frac{\alpha_s C_F}{2\pi} \ln(Q^2/P_{\perp}^2)$. Altinoluk, Jalilian-Marian, Marquet, 2406.08277

TMD factorisation for SIDIS at LO

Jet definition in DIS

NLO calculation of jet SIDIS 00000

Physical interpretation of the jet constraint

- Our new clustering condition equivalent to $\theta_{ij} \leq R \theta_{\rm jet}$ with $\theta_{\rm jet} \sim Q/q^+$.
- Angle of the jet set by its virtuality rather by its transverse momentum. (Naively, θ_{jet} ~ P_⊥/zq⁺.)
- Soft gluons contributing to Sudakov must have $\theta_g \gg \theta_{\rm jet} \Leftrightarrow z_g \le k_{g\perp}/Q.$

Stronger constraint than $heta_g \gg rac{P_\perp}{zq^+} \Leftrightarrow z_g \leq k_{g\perp}/P_\perp!$

Aligned jet configuration in dipole frame.

• Using $z_{\max} = k_{g\perp}/Q$ gives $S_{\text{DL}} = -\frac{\alpha_s C_F}{4\pi} \ln(Q^2/P_{\perp}^2)$.

• Sudakov logs and finite pieces, for our asymmetric jet clustering definition.

$$\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^*+A\to j+X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}}\Big|_{V} = \frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^*+A\to j+X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp}}\Big|_{\mathrm{LO}} \times \frac{\alpha_{\mathfrak{s}} C_{\mathcal{F}}}{\pi} \left[-\frac{1}{4}\ln^2\left(\frac{Q^2}{P_{\perp}^2}\right) + \left(\frac{3}{4} + \ln(R)\right)\ln\left(\frac{Q^2}{P_{\perp}^2}\right) - \frac{3}{2}\ln(R) + \frac{11}{4} - \frac{3\pi^2}{4} + \frac{3}{4}\ln^2(x_{\star}) + \frac{3}{8}\ln(x_{\star}) + \mathcal{O}(R^2)\right]$$

• x_{\star} factorisation scale: gluons with $z_g \leq x_{\star} P_{\perp}^2/Q^2$ resummed with high energy evolution.

Introduction 00	TMD factorisation for SIDIS at LO	Jet definition in DIS	NLO calculation of jet SIDIS 0000●	Conclusion O

DGLAP+CSS resummation

- Beyond LO, the quark TMD also depends upon the photon virtuality Q^2 .
- xF_q(x, P²_⊥, Q²) = number of quarks in the target with given x and P_⊥, as probed with a longitudinal resolution fixed by Q².
- Taking derivative w.r.t. $\ln(Q^2)$ and assuming Markovian evolution:

$$\begin{aligned} \frac{\partial \mathcal{F}_q(x, P_{\perp}^2, Q^2)}{\partial \ln Q^2} &= \frac{C_F}{2\pi} \left\{ \frac{\alpha_s(P_{\perp}^2)}{P_{\perp}^2} \int_{\Lambda^2}^{P_{\perp}^2} \mathrm{d}\ell_{\perp}^2 \,\mathcal{F}_q(x, \ell_{\perp}^2, Q^2) - \int_{P_{\perp}^2}^{Q^2} \frac{\mathrm{d}\ell_{\perp}^2}{\ell_{\perp}^2} \alpha_s(\ell_{\perp}^2) \mathcal{F}_q(x, P_{\perp}^2, Q^2) \right. \\ &\left. + \frac{3}{2} \frac{\alpha_s(P_{\perp}^2) C_F}{\pi} \mathcal{F}_q(x, P_{\perp}^2, Q^2) \end{aligned}$$

 \Rightarrow "diagonal" version of the CSS equation for the quark TMD from the dipole picture.

• Integrating our 1-loop result up to Q^2 yields:

$$xf_q(x,Q^2) = xf_q^{(0)}(x,Q^2) + \int_{\Lambda^2}^{Q^2} \frac{\mathrm{d}P_{\perp}^2}{P_{\perp}^2} \frac{\alpha_s(P_{\perp}^2)}{2\pi} \int_x^1 \mathrm{d}\xi \,\mathcal{P}_{qq}(\xi) \,\frac{x}{\xi} f_q\left(\frac{x}{\xi},P_{\perp}^2\right)$$

 \Rightarrow DGLAP evolution of the quark pdf from the dipole picture.

Similar results obtained for the WW gluon TMD in PC, Iancu, 2406.04238

Introduction 00	TMD factorisation for SIDIS at LO	Jet definition in DIS	NLO calculation of jet SIDIS	Conclusion •
Conclusion				

- Clarifying the jet definition (clustering algorithm) for jet production in SIDIS in the TMD limit Q² ≫ P²_⊥.
- Calculation of the Sudakov effect for jet production in SIDIS.
- NLO calculation in the high-energy formalism (dipole picture, CGC). Conclusions remain valid at moderate x.
- Emergence of the DGLAP and CSS evolutions of the quark TMD from the small-*x* approach.
- Sudakov suppression affects the jet p_t spectrum at low p_T , where it competes with CNM effects on final state evolution.